Subalgebras to a Wiener type algebra of pseudo-differential operators

Joachim Toft[1]

  • [1] Blekinge Technical University, Department of Mathematics, IHN, 371-79 Karlskrona (Suède)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 5, page 1347-1383
  • ISSN: 0373-0956

Abstract

top
We study general continuity properties for an increasing family of Banach spaces S w p of classes for pseudo-differential symbols, where S w = S w was introduced by J. Sjöstrand in 1993. We prove that the operators in Op ( S w p ) are Schatten-von Neumann operators of order p on L 2 . We prove also that Op ( S w p ) Op ( S w r ) Op ( S w r ) and S w p · S w q S w r , provided 1 / p + 1 / q = 1 / r . If instead 1 / p + 1 / q = 1 + 1 / r , then S w p w * S w q S w r . By modifying the definition of the S w p -spaces, one also obtains symbol classes related to the S ( m , g ) spaces.

How to cite

top

Toft, Joachim. "Subalgebras to a Wiener type algebra of pseudo-differential operators." Annales de l’institut Fourier 51.5 (2001): 1347-1383. <http://eudml.org/doc/115950>.

@article{Toft2001,
abstract = {We study general continuity properties for an increasing family of Banach spaces $S^p_w$ of classes for pseudo-differential symbols, where $S^\infty _w=S_w$ was introduced by J. Sjöstrand in 1993. We prove that the operators in $\{\rm Op\}(S^p_w)$ are Schatten-von Neumann operators of order $p$ on $L^2$. We prove also that $\{\rm Op\}(S^p_w)\{\rm Op\}(S^r_w)\subset \{\rm Op\}(S^r_w)$ and $S^p_w\cdot S^q_w\subset S^r_w$, provided $1/p + 1/q =1/r$. If instead $1/p +1/q = 1+1/r$, then $S^p_ww * S^q_w\subset S^r_w$. By modifying the definition of the $S^p_w$-spaces, one also obtains symbol classes related to the $S(m,g)$ spaces.},
affiliation = {Blekinge Technical University, Department of Mathematics, IHN, 371-79 Karlskrona (Suède)},
author = {Toft, Joachim},
journal = {Annales de l’institut Fourier},
keywords = {pseudo-differential operators; Weyl calculus; Schatten-von Neumann classes; admissible functions; Hölder's inequality; Young's inequality; subalgebras; properties of pseudodifferential operators; symbols},
language = {eng},
number = {5},
pages = {1347-1383},
publisher = {Association des Annales de l'Institut Fourier},
title = {Subalgebras to a Wiener type algebra of pseudo-differential operators},
url = {http://eudml.org/doc/115950},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Toft, Joachim
TI - Subalgebras to a Wiener type algebra of pseudo-differential operators
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 5
SP - 1347
EP - 1383
AB - We study general continuity properties for an increasing family of Banach spaces $S^p_w$ of classes for pseudo-differential symbols, where $S^\infty _w=S_w$ was introduced by J. Sjöstrand in 1993. We prove that the operators in ${\rm Op}(S^p_w)$ are Schatten-von Neumann operators of order $p$ on $L^2$. We prove also that ${\rm Op}(S^p_w){\rm Op}(S^r_w)\subset {\rm Op}(S^r_w)$ and $S^p_w\cdot S^q_w\subset S^r_w$, provided $1/p + 1/q =1/r$. If instead $1/p +1/q = 1+1/r$, then $S^p_ww * S^q_w\subset S^r_w$. By modifying the definition of the $S^p_w$-spaces, one also obtains symbol classes related to the $S(m,g)$ spaces.
LA - eng
KW - pseudo-differential operators; Weyl calculus; Schatten-von Neumann classes; admissible functions; Hölder's inequality; Young's inequality; subalgebras; properties of pseudodifferential operators; symbols
UR - http://eudml.org/doc/115950
ER -

References

top
  1. A. Boulkhemair, Remarks on a Wiener type pseudodifferential algebra and Fourier integral operators, Math. Res. L. 4 (1997), 53-67 Zbl0905.35103MR1432810
  2. J. Bergh, J. Löfström, Interpolation Spaces. An introduction, (1976), Springer-Verlag, Berlin-Heidelberg-New York Zbl0344.46071MR482275
  3. M. Dimassi, J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, vol. 268 (1999), Cambridge University Press, Cambridge, New York, Melbourne, Madrid Zbl0926.35002MR1735654
  4. L. Hörmander, The Analysis of Linear Partial Differential Operators, vol. III (1985), Springer-Verlag, Berlin-Heidelberg-New York-Tokyo Zbl0601.35001MR404822
  5. E. H. Lieb, Gaussian kernels have only Gaussian maximizers, Invent. Math. 102 (1990), 179-208 Zbl0726.42005MR1069246
  6. M. Reed, B. Simon, Methods of modern mathematical physics, (1979), Academic Press, London-New York Zbl0405.47007
  7. B. Simon, Trace ideals and their applications I, vol. 35 (1979), Cambridge University Press, Cambridge-London-New York-Melbourne Zbl0423.47001MR541149
  8. J. Sjöstrand, An algebra of pseudodifferential operators, Math. Res. L. 1 (1994), 185-192 Zbl0840.35130MR1266757
  9. J. Sjöstrand, Wiener type algebras of pseudodifferential operators, Séminaire Equations aux Dérivées Partielles, Ecole Polytechnique, 1994 n°IV (1995) Zbl0880.35145
  10. J. Toft, Continuity and Positivity Problems in Pseudo-Differential Calculus, (1996) 
  11. J. Toft, Regularizations, decompositions and lower bound problems in the Weyl calculus, Comm. Partial Differential Equations 7-8 (2000), 1201-1234 Zbl0963.35215
  12. J. Toft, Continuity properties in non-commutative convolution algebras with applications in pseudo-differential calculus, Bull. Sci. Math. 125 (2001) Zbl1002.43003MR1906240

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.