The fundamental groupoid scheme and applications

Hélène Esnault[1]; Phùng Hô Hai[2]

  • [1] Universität Duisburg-Essen Mathematik 45117 Essen (Germany)
  • [2] Universität Duisburg-Essen Mathematik, 45117 Essen (Germany)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 7, page 2381-2412
  • ISSN: 0373-0956

Abstract

top
We define a linear structure on Grothendieck’s arithmetic fundamental group π 1 ( X , x ) of a scheme X defined over a field k of characteristic 0. It allows us to link the existence of sections of the Galois group Gal ( k ¯ / k ) to π 1 ( X , x ) with the existence of a neutral fiber functor on the category which linearizes it. We apply the construction to affine curves and neutral fiber functors coming from a tangent vector at a rational point at infinity, in order to follow this rational point in the universal covering of the affine curve.

How to cite

top

Esnault, Hélène, and Hai, Phùng Hô. "The fundamental groupoid scheme and applications." Annales de l’institut Fourier 58.7 (2008): 2381-2412. <http://eudml.org/doc/10382>.

@article{Esnault2008,
abstract = {We define a linear structure on Grothendieck’s arithmetic fundamental group $\pi _1(X, x)$ of a scheme $X$ defined over a field $k$ of characteristic 0. It allows us to link the existence of sections of the Galois group $\operatorname\{Gal\}(\bar\{k\}/k)$ to $\pi _1(X, x)$ with the existence of a neutral fiber functor on the category which linearizes it. We apply the construction to affine curves and neutral fiber functors coming from a tangent vector at a rational point at infinity, in order to follow this rational point in the universal covering of the affine curve.},
affiliation = {Universität Duisburg-Essen Mathematik 45117 Essen (Germany); Universität Duisburg-Essen Mathematik, 45117 Essen (Germany)},
author = {Esnault, Hélène, Hai, Phùng Hô},
journal = {Annales de l’institut Fourier},
keywords = {Finite connection; tensor category; tangential fiber functor; finite connection},
language = {eng},
number = {7},
pages = {2381-2412},
publisher = {Association des Annales de l’institut Fourier},
title = {The fundamental groupoid scheme and applications},
url = {http://eudml.org/doc/10382},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Esnault, Hélène
AU - Hai, Phùng Hô
TI - The fundamental groupoid scheme and applications
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 7
SP - 2381
EP - 2412
AB - We define a linear structure on Grothendieck’s arithmetic fundamental group $\pi _1(X, x)$ of a scheme $X$ defined over a field $k$ of characteristic 0. It allows us to link the existence of sections of the Galois group $\operatorname{Gal}(\bar{k}/k)$ to $\pi _1(X, x)$ with the existence of a neutral fiber functor on the category which linearizes it. We apply the construction to affine curves and neutral fiber functors coming from a tangent vector at a rational point at infinity, in order to follow this rational point in the universal covering of the affine curve.
LA - eng
KW - Finite connection; tensor category; tangential fiber functor; finite connection
UR - http://eudml.org/doc/10382
ER -

References

top
  1. P. Deligne, Le groupe fondamental de la droite projective moins trois points, Galois groups over (Berkeley, CA, 1987) 16 (1989), 79-297, Springer, New York Zbl0742.14022MR1012168
  2. P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II 87 (1990), 111-195, Birkhäuser, Boston, MA Zbl0727.14010MR1106898
  3. P. Deligne, J. Milne, Tannakian Categories, Lectures Notes in Mathematics, Springer-Verlag 900 (1982), 101-228 Zbl0477.14004
  4. H. Esnault, P.H. Hai, X.-T. Sun, On Nori group scheme, Progress in Math., Birkhäuser 265 (2007), 375-396 
  5. Hélène Esnault, Phùng Hô Hai, The Gauss-Manin connection and Tannaka duality, Int. Math. Res. Not. (2006) Zbl1105.14012MR2211153
  6. A. Grothendieck, Revêtements étales et groupe fondamental, SGA 1, Lectures Notes in Mathematics, Springer-Verlag 224 (1971) MR354651
  7. Alexander Grothendieck, Brief an G. Faltings, Geometric Galois actions, 1 242 (1997), 49-58, Cambridge Univ. Press, Cambridge Zbl0901.14002MR1483106
  8. P.H. Hai, A construction of a quotient category, (2006) 
  9. Nicholas M. Katz, On the calculation of some differential Galois groups, Invent. Math. 87 (1987), 13-61 Zbl0609.12025MR862711
  10. Madhav V. Nori, On the representations of the fundamental group, Compositio Math. 33 (1976), 29-41 Zbl0337.14016MR417179
  11. Madhav V. Nori, The fundamental group-scheme, Proc. Indian Acad. Sci. Math. Sci. 91 (1982), 73-122 Zbl0586.14006MR682517

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.