Infinite-dimensional hyperkähler manifolds associated with Hermitian-symmetric affine coadjoint orbits

Alice Barbara Tumpach[1]

  • [1] Université Lille 1 Laboratoire Painlevé 59 655 Villeneuve d’Ascq Cedex (France)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 1, page 167-197
  • ISSN: 0373-0956

Abstract

top
In this paper, we construct a hyperkähler structure on the complexification 𝒪 of any Hermitian symmetric affine coadjoint orbit 𝒪 of a semi-simple L * -group of compact type, which is compatible with the complex symplectic form of Kirillov-Kostant-Souriau and restricts to the Kähler structure of 𝒪 . By a relevant identification of the complex orbit 𝒪 with the cotangent space T 𝒪 of 𝒪 induced by Mostow’s decomposition theorem, this leads to the existence of a hyperkähler structure on T 𝒪 compatible with Liouville’s complex symplectic form and whose restriction to the zero section is the Kähler structure of 𝒪 . Explicit formulas of the metric in terms of the complex orbit and of the cotangent space are given. As a particular case, we obtain the one-parameter family of hyperkähler structures on a natural complexification of the restricted Grassmannian and on the cotangent space of the restricted Grassmannian previously constructed by the author via a hyperkähler reduction.

How to cite

top

Tumpach, Alice Barbara. "Infinite-dimensional hyperkähler manifolds associated with Hermitian-symmetric affine coadjoint orbits." Annales de l’institut Fourier 59.1 (2009): 167-197. <http://eudml.org/doc/10389>.

@article{Tumpach2009,
abstract = {In this paper, we construct a hyperkähler structure on the complexification $\mathcal\{O\}^\mathbb\{C\}$ of any Hermitian symmetric affine coadjoint orbit $\mathcal\{O\}$ of a semi-simple $L^*$-group of compact type, which is compatible with the complex symplectic form of Kirillov-Kostant-Souriau and restricts to the Kähler structure of $\mathcal\{O\}$. By a relevant identification of the complex orbit $\mathcal\{O\}^\mathbb\{C\}$ with the cotangent space $T\mathcal\{O\}$ of $\mathcal\{O\}$ induced by Mostow’s decomposition theorem, this leads to the existence of a hyperkähler structure on $T\mathcal\{O\}$ compatible with Liouville’s complex symplectic form and whose restriction to the zero section is the Kähler structure of $\mathcal\{O\}$. Explicit formulas of the metric in terms of the complex orbit and of the cotangent space are given. As a particular case, we obtain the one-parameter family of hyperkähler structures on a natural complexification of the restricted Grassmannian and on the cotangent space of the restricted Grassmannian previously constructed by the author via a hyperkähler reduction.},
affiliation = {Université Lille 1 Laboratoire Painlevé 59 655 Villeneuve d’Ascq Cedex (France)},
author = {Tumpach, Alice Barbara},
journal = {Annales de l’institut Fourier},
keywords = {Infinite-dimensional hyperkähler manifolds; affine coadjoint orbit; Hermitian-symmetric spaces; hyperkähler reduction; cotangent space; strongly orthogonal roots; $L^*$-algebra; restricted Grassmannian; infinite-dimensional hyper-Kähler manifolds; hyper-Kähler reduction; -algebra},
language = {eng},
number = {1},
pages = {167-197},
publisher = {Association des Annales de l’institut Fourier},
title = {Infinite-dimensional hyperkähler manifolds associated with Hermitian-symmetric affine coadjoint orbits},
url = {http://eudml.org/doc/10389},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Tumpach, Alice Barbara
TI - Infinite-dimensional hyperkähler manifolds associated with Hermitian-symmetric affine coadjoint orbits
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 1
SP - 167
EP - 197
AB - In this paper, we construct a hyperkähler structure on the complexification $\mathcal{O}^\mathbb{C}$ of any Hermitian symmetric affine coadjoint orbit $\mathcal{O}$ of a semi-simple $L^*$-group of compact type, which is compatible with the complex symplectic form of Kirillov-Kostant-Souriau and restricts to the Kähler structure of $\mathcal{O}$. By a relevant identification of the complex orbit $\mathcal{O}^\mathbb{C}$ with the cotangent space $T\mathcal{O}$ of $\mathcal{O}$ induced by Mostow’s decomposition theorem, this leads to the existence of a hyperkähler structure on $T\mathcal{O}$ compatible with Liouville’s complex symplectic form and whose restriction to the zero section is the Kähler structure of $\mathcal{O}$. Explicit formulas of the metric in terms of the complex orbit and of the cotangent space are given. As a particular case, we obtain the one-parameter family of hyperkähler structures on a natural complexification of the restricted Grassmannian and on the cotangent space of the restricted Grassmannian previously constructed by the author via a hyperkähler reduction.
LA - eng
KW - Infinite-dimensional hyperkähler manifolds; affine coadjoint orbit; Hermitian-symmetric spaces; hyperkähler reduction; cotangent space; strongly orthogonal roots; $L^*$-algebra; restricted Grassmannian; infinite-dimensional hyper-Kähler manifolds; hyper-Kähler reduction; -algebra
UR - http://eudml.org/doc/10389
ER -

References

top
  1. E. Andruchow, G. Larotonda, Hopf-Rinow Theorem in the Sato Grassmannian, to appear in J. Funct. Analysis Zbl1160.22010
  2. E. Andruchow, G. Larotonda, Nonpositively curved metric in the positive cone of a finite von Neumann algebra, preprint Zbl1098.53033
  3. A. Arvanitoyeorgos, An Introduction to Lie Groups and the Geometry of Homogeneous Spaces, (2003), American Math. Society, Providence, R.I. Zbl1045.53001MR2011126
  4. V. K. Balachandran, Simple L * -algebras of classical type, Math. Ann. 180 (1969), 205-219 Zbl0159.42203MR243362
  5. D. Beltiţă, T. Ratiu, A. B. Tumpach, The restricted Grassmannian, Banach Lie-Poisson spaces, and coadjoint orbits, J. Funct. Anal. 247 (2007), 138-168 Zbl1120.22007MR2319757
  6. A. L. Besse, Einstein manifolds, 10 (1987), Springer, Folge 3 Zbl0613.53001MR867684
  7. O. Biquard, Sur les équations de Nahm et la structure de Poisson des algèbres de Lie semi-simples complexes, Math. Ann. 304 (1996), 253-276 Zbl0843.53027MR1371766
  8. O. Biquard, P. Gauduchon, Hyperkähler metrics on cotangent bundles of Hermitian Symmetric spaces, Geometry and Physics, Serie 184, Marcel Dekker (1996), 287-298 Zbl0879.53051MR1423175
  9. O. Biquard, P. Gauduchon, La métrique hyperkählérienne des orbites coadjointes de type symétrique d’un groupe de Lie complexe semi-simple, C. R. Acad. Sci. Paris, série I 323 (1996), 1259-1264 Zbl0866.58007MR1428547
  10. O. Biquard, P. Gauduchon, Géométrie hyperkählérienne des espaces hermitiens symétriques complexifiés, Séminaire de théorie spectrale et géométrie, Grenoble 16 (1998), 127-173 Zbl0943.53029MR1666451
  11. J. Cheeger, D. G. Ebin, Comparison Theorems in Riemannian Geometry, (1975), North-Holland, Amsterdam Zbl0309.53035MR458335
  12. I. Ekeland, The Hopf-Rinow Theorem in infinite dimension, J. Differential Geometry 13 (1978), 287-301 Zbl0393.58004MR540948
  13. P. de la Harpe, Classification des L * -algèbres semi-simples réelles séparables, C.R. Acad. Sci. Paris, Ser. A 272 (1971), 1559-1561 Zbl0215.48501MR282218
  14. S. Helgason, Differential Geometry and Symmetric Spaces, (1962), Academic Press, New York Zbl0111.18101MR145455
  15. N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), 59-126 Zbl0634.53045MR887284
  16. W. Kaup, Algebraic characterization of symmetric complex Banach manifolds, Math. Ann. 228 (1977), 39-64 Zbl0335.58005MR454091
  17. W. Kaup, Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension I, II, Math. Ann. 257 (1981), 463-486 Zbl0482.32010MR639580
  18. A. G. Kovalev, Nahm’s equation and complex adjoint orbits, Quart. J. Math. 47 (1993), 41-58 Zbl0852.53033
  19. P. B. Kronheimer, A hyper-Kählerian structure on coadjoint orbits of a semisimple complex group, J. London Math. Soc. (2) 42 (1990), 193-208 Zbl0721.22006MR1083440
  20. P. B. Kronheimer, Instantons and the geometry of the nilpotent variety, J. Differential Geometry 32 (1990), 473-490 Zbl0725.58007MR1072915
  21. G. Larotonda, Geodesic Convexity, Symmetric Spaces and Hilbert-Schmidt Operators, (2005), Buenos Aires, Argentina 
  22. G. D. Mostow, Some new decomposition theorems for semi-simple groups, Mem. Amer. Math. Soc. (1955), 31-54 Zbl0064.25901MR69829
  23. K. -H. Neeb, A Cartan-Hadamard theorem for Banach-Finsler manifolds, Geom. Dedicata 95 (2002), 115-156 Zbl1027.58003MR1950888
  24. K. -H. Neeb, Highest weight representations and infinite-dimensional Kähler manifolds, Recent advanceds in Lie theory (Vigo, 2000) 25 (2002), 367-392 Zbl1020.22008MR1937991
  25. K. -H. Neeb, Infinite-dimensional groups and their representations, Lie theory, Progr. Math. 228 (2004), 213-328 Zbl1076.22016MR2042690
  26. B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, (1983), Academic Press, New York Zbl0531.53051MR719023
  27. A. Pressley, G. Segal, Loop Groups, viii (1988), Clarendon Press, Oxford Mathematical Monographs. Oxford (UK) Zbl0638.22009MR900587
  28. J. R. Schue, Hilbert space methods in the theory of Lie algebras, Trans. Amer. Math. Soc. 95 (1960), 69-80 Zbl0093.30601MR117575
  29. J. R. Schue, Cartan decompositions for L * -algebras, Trans. Amer. Math. Soc. 98 (1961), 334-349 Zbl0099.10205MR133408
  30. A. B. Tumpach, On the classification of affine Hermitian-symmetric coadjoint orbits of L * -groups, to appear in Forum Mathematicum Zbl1166.58301
  31. A. B. Tumpach, Variétés kählériennes et hyperkählériennes de dimension infinie, (2005) 
  32. A. B. Tumpach, Mostow Decomposition Theorem for a L * -group and Applications to affine coadjoint orbits and stable manifolds, preprint arXiv:math-ph/0605039 (2006) 
  33. A. B. Tumpach, Hyperkähler structures and infinite-dimensional Grassmannians, J. Funct. Anal. 243 (2007), 158-206 Zbl1124.58004MR2291435
  34. I. Unsain, Classification of the simple real separable L * -algebras, J. Diff. Geom. 7 (1972), 423-451 Zbl0279.46044MR325721
  35. J. A. Wolf, On the classification of Hermitian Symmetric Spaces, J. Math. Mech. 13 (1964), 489-496 Zbl0245.32011MR160850
  36. J. A. Wolf, Fine structure of Hermitian Symmetric Spaces, Symmetric Spaces, short Courses presented at Washington Univ., pure appl. Math. 8 (1972), 271-357 Zbl0257.32014MR404716
  37. J. A. Wolf, Spaces of Constant Curvature, (1972), Department of Mathematics, University of California, Berkeley, Calif. Zbl0281.53034MR343213
  38. T. Wurzbacher, Fermionic Second Quantization and the Geometry of the Restricted Grassmannian, 31 (2001), Birkhäuser Verlag, Basel Zbl1058.53064MR1853244

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.