Infinite-dimensional hyperkähler manifolds associated with Hermitian-symmetric affine coadjoint orbits
- [1] Université Lille 1 Laboratoire Painlevé 59 655 Villeneuve d’Ascq Cedex (France)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 1, page 167-197
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topTumpach, Alice Barbara. "Infinite-dimensional hyperkähler manifolds associated with Hermitian-symmetric affine coadjoint orbits." Annales de l’institut Fourier 59.1 (2009): 167-197. <http://eudml.org/doc/10389>.
@article{Tumpach2009,
abstract = {In this paper, we construct a hyperkähler structure on the complexification $\mathcal\{O\}^\mathbb\{C\}$ of any Hermitian symmetric affine coadjoint orbit $\mathcal\{O\}$ of a semi-simple $L^*$-group of compact type, which is compatible with the complex symplectic form of Kirillov-Kostant-Souriau and restricts to the Kähler structure of $\mathcal\{O\}$. By a relevant identification of the complex orbit $\mathcal\{O\}^\mathbb\{C\}$ with the cotangent space $T\mathcal\{O\}$ of $\mathcal\{O\}$ induced by Mostow’s decomposition theorem, this leads to the existence of a hyperkähler structure on $T\mathcal\{O\}$ compatible with Liouville’s complex symplectic form and whose restriction to the zero section is the Kähler structure of $\mathcal\{O\}$. Explicit formulas of the metric in terms of the complex orbit and of the cotangent space are given. As a particular case, we obtain the one-parameter family of hyperkähler structures on a natural complexification of the restricted Grassmannian and on the cotangent space of the restricted Grassmannian previously constructed by the author via a hyperkähler reduction.},
affiliation = {Université Lille 1 Laboratoire Painlevé 59 655 Villeneuve d’Ascq Cedex (France)},
author = {Tumpach, Alice Barbara},
journal = {Annales de l’institut Fourier},
keywords = {Infinite-dimensional hyperkähler manifolds; affine coadjoint orbit; Hermitian-symmetric spaces; hyperkähler reduction; cotangent space; strongly orthogonal roots; $L^*$-algebra; restricted Grassmannian; infinite-dimensional hyper-Kähler manifolds; hyper-Kähler reduction; -algebra},
language = {eng},
number = {1},
pages = {167-197},
publisher = {Association des Annales de l’institut Fourier},
title = {Infinite-dimensional hyperkähler manifolds associated with Hermitian-symmetric affine coadjoint orbits},
url = {http://eudml.org/doc/10389},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Tumpach, Alice Barbara
TI - Infinite-dimensional hyperkähler manifolds associated with Hermitian-symmetric affine coadjoint orbits
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 1
SP - 167
EP - 197
AB - In this paper, we construct a hyperkähler structure on the complexification $\mathcal{O}^\mathbb{C}$ of any Hermitian symmetric affine coadjoint orbit $\mathcal{O}$ of a semi-simple $L^*$-group of compact type, which is compatible with the complex symplectic form of Kirillov-Kostant-Souriau and restricts to the Kähler structure of $\mathcal{O}$. By a relevant identification of the complex orbit $\mathcal{O}^\mathbb{C}$ with the cotangent space $T\mathcal{O}$ of $\mathcal{O}$ induced by Mostow’s decomposition theorem, this leads to the existence of a hyperkähler structure on $T\mathcal{O}$ compatible with Liouville’s complex symplectic form and whose restriction to the zero section is the Kähler structure of $\mathcal{O}$. Explicit formulas of the metric in terms of the complex orbit and of the cotangent space are given. As a particular case, we obtain the one-parameter family of hyperkähler structures on a natural complexification of the restricted Grassmannian and on the cotangent space of the restricted Grassmannian previously constructed by the author via a hyperkähler reduction.
LA - eng
KW - Infinite-dimensional hyperkähler manifolds; affine coadjoint orbit; Hermitian-symmetric spaces; hyperkähler reduction; cotangent space; strongly orthogonal roots; $L^*$-algebra; restricted Grassmannian; infinite-dimensional hyper-Kähler manifolds; hyper-Kähler reduction; -algebra
UR - http://eudml.org/doc/10389
ER -
References
top- E. Andruchow, G. Larotonda, Hopf-Rinow Theorem in the Sato Grassmannian, to appear in J. Funct. Analysis Zbl1160.22010
- E. Andruchow, G. Larotonda, Nonpositively curved metric in the positive cone of a finite von Neumann algebra, preprint Zbl1098.53033
- A. Arvanitoyeorgos, An Introduction to Lie Groups and the Geometry of Homogeneous Spaces, (2003), American Math. Society, Providence, R.I. Zbl1045.53001MR2011126
- V. K. Balachandran, Simple -algebras of classical type, Math. Ann. 180 (1969), 205-219 Zbl0159.42203MR243362
- D. Beltiţă, T. Ratiu, A. B. Tumpach, The restricted Grassmannian, Banach Lie-Poisson spaces, and coadjoint orbits, J. Funct. Anal. 247 (2007), 138-168 Zbl1120.22007MR2319757
- A. L. Besse, Einstein manifolds, 10 (1987), Springer, Folge 3 Zbl0613.53001MR867684
- O. Biquard, Sur les équations de Nahm et la structure de Poisson des algèbres de Lie semi-simples complexes, Math. Ann. 304 (1996), 253-276 Zbl0843.53027MR1371766
- O. Biquard, P. Gauduchon, Hyperkähler metrics on cotangent bundles of Hermitian Symmetric spaces, Geometry and Physics, Serie 184, Marcel Dekker (1996), 287-298 Zbl0879.53051MR1423175
- O. Biquard, P. Gauduchon, La métrique hyperkählérienne des orbites coadjointes de type symétrique d’un groupe de Lie complexe semi-simple, C. R. Acad. Sci. Paris, série I 323 (1996), 1259-1264 Zbl0866.58007MR1428547
- O. Biquard, P. Gauduchon, Géométrie hyperkählérienne des espaces hermitiens symétriques complexifiés, Séminaire de théorie spectrale et géométrie, Grenoble 16 (1998), 127-173 Zbl0943.53029MR1666451
- J. Cheeger, D. G. Ebin, Comparison Theorems in Riemannian Geometry, (1975), North-Holland, Amsterdam Zbl0309.53035MR458335
- I. Ekeland, The Hopf-Rinow Theorem in infinite dimension, J. Differential Geometry 13 (1978), 287-301 Zbl0393.58004MR540948
- P. de la Harpe, Classification des -algèbres semi-simples réelles séparables, C.R. Acad. Sci. Paris, Ser. A 272 (1971), 1559-1561 Zbl0215.48501MR282218
- S. Helgason, Differential Geometry and Symmetric Spaces, (1962), Academic Press, New York Zbl0111.18101MR145455
- N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), 59-126 Zbl0634.53045MR887284
- W. Kaup, Algebraic characterization of symmetric complex Banach manifolds, Math. Ann. 228 (1977), 39-64 Zbl0335.58005MR454091
- W. Kaup, Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension I, II, Math. Ann. 257 (1981), 463-486 Zbl0482.32010MR639580
- A. G. Kovalev, Nahm’s equation and complex adjoint orbits, Quart. J. Math. 47 (1993), 41-58 Zbl0852.53033
- P. B. Kronheimer, A hyper-Kählerian structure on coadjoint orbits of a semisimple complex group, J. London Math. Soc. (2) 42 (1990), 193-208 Zbl0721.22006MR1083440
- P. B. Kronheimer, Instantons and the geometry of the nilpotent variety, J. Differential Geometry 32 (1990), 473-490 Zbl0725.58007MR1072915
- G. Larotonda, Geodesic Convexity, Symmetric Spaces and Hilbert-Schmidt Operators, (2005), Buenos Aires, Argentina
- G. D. Mostow, Some new decomposition theorems for semi-simple groups, Mem. Amer. Math. Soc. (1955), 31-54 Zbl0064.25901MR69829
- K. -H. Neeb, A Cartan-Hadamard theorem for Banach-Finsler manifolds, Geom. Dedicata 95 (2002), 115-156 Zbl1027.58003MR1950888
- K. -H. Neeb, Highest weight representations and infinite-dimensional Kähler manifolds, Recent advanceds in Lie theory (Vigo, 2000) 25 (2002), 367-392 Zbl1020.22008MR1937991
- K. -H. Neeb, Infinite-dimensional groups and their representations, Lie theory, Progr. Math. 228 (2004), 213-328 Zbl1076.22016MR2042690
- B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, (1983), Academic Press, New York Zbl0531.53051MR719023
- A. Pressley, G. Segal, Loop Groups, viii (1988), Clarendon Press, Oxford Mathematical Monographs. Oxford (UK) Zbl0638.22009MR900587
- J. R. Schue, Hilbert space methods in the theory of Lie algebras, Trans. Amer. Math. Soc. 95 (1960), 69-80 Zbl0093.30601MR117575
- J. R. Schue, Cartan decompositions for -algebras, Trans. Amer. Math. Soc. 98 (1961), 334-349 Zbl0099.10205MR133408
- A. B. Tumpach, On the classification of affine Hermitian-symmetric coadjoint orbits of -groups, to appear in Forum Mathematicum Zbl1166.58301
- A. B. Tumpach, Variétés kählériennes et hyperkählériennes de dimension infinie, (2005)
- A. B. Tumpach, Mostow Decomposition Theorem for a -group and Applications to affine coadjoint orbits and stable manifolds, preprint arXiv:math-ph/0605039 (2006)
- A. B. Tumpach, Hyperkähler structures and infinite-dimensional Grassmannians, J. Funct. Anal. 243 (2007), 158-206 Zbl1124.58004MR2291435
- I. Unsain, Classification of the simple real separable -algebras, J. Diff. Geom. 7 (1972), 423-451 Zbl0279.46044MR325721
- J. A. Wolf, On the classification of Hermitian Symmetric Spaces, J. Math. Mech. 13 (1964), 489-496 Zbl0245.32011MR160850
- J. A. Wolf, Fine structure of Hermitian Symmetric Spaces, Symmetric Spaces, short Courses presented at Washington Univ., pure appl. Math. 8 (1972), 271-357 Zbl0257.32014MR404716
- J. A. Wolf, Spaces of Constant Curvature, (1972), Department of Mathematics, University of California, Berkeley, Calif. Zbl0281.53034MR343213
- T. Wurzbacher, Fermionic Second Quantization and the Geometry of the Restricted Grassmannian, 31 (2001), Birkhäuser Verlag, Basel Zbl1058.53064MR1853244
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.