Géométrie hyperkählérienne des espaces hermitiens symétriques complexifiés
Olivier Biquard; Paul Gauduchon
Séminaire de théorie spectrale et géométrie (1997-1998)
- Volume: 16, page 127-173
- ISSN: 1624-5458
Access Full Article
topHow to cite
topBiquard, Olivier, and Gauduchon, Paul. "Géométrie hyperkählérienne des espaces hermitiens symétriques complexifiés." Séminaire de théorie spectrale et géométrie 16 (1997-1998): 127-173. <http://eudml.org/doc/114419>.
@article{Biquard1997-1998,
author = {Biquard, Olivier, Gauduchon, Paul},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {hyper-Kähler metric; hyper-Kähler manifold; moment mapping; Hermitian symmetric space; complex Grassmannian; Eguchi-Hanson metric; Kobak-Swann formula},
language = {fre},
pages = {127-173},
publisher = {Institut Fourier},
title = {Géométrie hyperkählérienne des espaces hermitiens symétriques complexifiés},
url = {http://eudml.org/doc/114419},
volume = {16},
year = {1997-1998},
}
TY - JOUR
AU - Biquard, Olivier
AU - Gauduchon, Paul
TI - Géométrie hyperkählérienne des espaces hermitiens symétriques complexifiés
JO - Séminaire de théorie spectrale et géométrie
PY - 1997-1998
PB - Institut Fourier
VL - 16
SP - 127
EP - 173
LA - fre
KW - hyper-Kähler metric; hyper-Kähler manifold; moment mapping; Hermitian symmetric space; complex Grassmannian; Eguchi-Hanson metric; Kobak-Swann formula
UR - http://eudml.org/doc/114419
ER -
References
top- [1] M.F. ATIYAH, N.J. HITCHIN and I.M SINGER, Self-duality in four-dimensional Riemannian geometry, Proc, R. Soc. Lond. A 362 ( 1978), 425-461. Zbl0389.53011MR506229
- [2] A. BEAUVILLE, Variétés kählériennes dont la première classe de Chern est nulle, J. Diff. Geom. 18 ( 1990), 211-235. Zbl0537.53056MR730926
- [3] A.L. BESSE, Einstein manifolds. Erg. der Math. 10, Springer-Verlag ( 1987). Zbl0613.53001MR867684
- [4] O. BIQUARO, Sur les équations de Nahm et la structure de Poisson des algèbres de Lie semi-simples complexes, Math. Ann. 304 ( 1996), 253-276. Zbl0843.53027MR1371766
- [5] O. BIQUABD, Twisteurs des orbites coadjointes et métriques hyper-pseudokählériennes, Bull. Soc. Math. France 126 ( 1998), 79-105. Zbl0929.53024MR1651382
- [6] O. BIQUARD and P. GAUDUCHON, Hyperkähler metrics on cotangent bundles of hermitian symmetric spaces, in Geometry and Physics, J. Andersen, J. Dupont, H. Pedersen and A. Swann, editors, Lect. Notes PureAppl Math. Ser. 184, Marcel Dekker ( 1996), 287-298. Zbl0879.53051MR1423175
- [7] O. BIQUARD et P. GAUDUCHON, La métrique hyperkählérienne des orbites coadjointes de type symétrique d'un groupe de Lie complexe semi-simple, C.R. Acad. Sci. Paris, t. 323, série I ( 1996), 1259-1264. Zbl0866.58007MR1428547
- [8] D. BURNS, Some examples of the twistor construction, dans Contributions to several complex variables, in honor of Wilhelm Stoll (eds. A. Howard and RM.Wong), Vieweg ( 1986), 51-67. Zbl0596.53057MR859192
- [9] E. CALABI, Métriques kählériennes et fibrés holomorphes, Ann. Ec. Norm. Sup. 12 ( 1979), 269-294. Zbl0431.53056MR543218
- [10] A. DANCER and R. SZÖKE, Symmetric spaces, adapted complex structures and hyperkähler structures, Q. J. Math., Oxford II, Series 48,189 ( 1997), 27-38. Zbl0879.32025MR1439696
- [11] S.K. DONALDSON, Nahm's equations and the classification of monopoles, Comm. Math. Phys. 96 ( 1984), 387-407. Zbl0603.58042MR769355
- [12] T. EGUCHI and A.J. HANSON, Asymptotically flat self-dual solutions to Euclidean gravity, Phys. Lett. 74B ( 1978), 249-251.
- [13] G.W. GIBBONS and S. HAWKING, Gravitational multi-instantons, phys. Lett. 78B ( 1978), 430-432.
- [14] R. GODEMENT, Introduction à la théorie des groupes de Lie, Publications mathématiques de l'Université Paris 7,11-12 ( 1982). Zbl0533.22001
- [15] V. GUILLEMIN and S. STERNBERG, Convexity Properties of the Moment Mapping, Inv. Math. 67 ( 1982), 491-513. Zbl0503.58017MR664117
- [16] N.J. HITCHIN, Monopoles, minimal surfaces and Algebraic curves, Presses Universitaires de Montréal, 105 ( 1987). Zbl0644.53059MR935967
- [17] N.J. HITCHIN, Hyperkähler manifolds, Séminaire Bourbaki, exposé 748 ( 1991). Zbl0979.53051
- [18] N.J. HITCHIN, Integrables systems in Riemannian geometry Zbl0939.37039
- [19] N.J. HITCHIN, A. KARLHEDE, U. LINDSTRÖM and M. ROCEK, Hyperkähler metrics and supersymmetry, Comm. Math. Phys. 108 ( 1987), 535-589. Zbl0612.53043MR877637
- [20] D. KALEDIN, Hyperkäher structures on total spaces of holomorphic cotangenl bundles, Preprint ( 1997), alg-geom/9710026.
- [21] P. KOBAK and A. SWANN, Quaternionic geometry of a nilpotent variety, Math. Ann. 297 ( 1993), 747-764. Zbl0807.53040MR1245417
- [22] T. KOBAYASHI, Proper action on a homogeneous space of reductive type, Math. Ann. 285 ( 1989), 249-263. Zbl0662.22008MR1016093
- [23] S. KOBAYASHI and K. NOMIZU, Foundations of Differential Geometry, II, Interscience Tracts in Pure and Appl. Math. 15, II, Interscience Publishers, Wiley ( 1969) Zbl0175.48504
- [24] S. KOBAYASHI and H. Wu, On holomorphic sections of certain Hermitian vector bundles, Math. Ann.189 ( 1970), 1-4. Zbl0189.52201MR270392
- [25] A.G. KOVALEV, Nahm's equations and complex adjoint orbits, Quat. J. Math. Oxford 47 ( 1996), 41-58. Zbl0852.53033MR1380949
- [26] P.B. KRONHEIMER, Instantons and the geometry of the nilpotent variety, J. Diff. Geom. 32 ( 1990), 473-490. Zbl0725.58007MR1072915
- [27] P.B. KRONHEIMER, A hyperkähler structure on coadjoint orbits of a semi-simple Lie group, J. London Math. Soc. 42 ( 1990), 193-208. Zbl0721.22006MR1083440
- [28] S. SANTA CRUZ, Construction of hyperkähler metrics for complex adjoint orbits, Ph. D. thesis, Univ. of Warwick, Sept. 1995. Zbl0924.53034
- [29] A. WEIL, Introduction à l'étude des variétés kählériennes, Publications de l'Institut de Mathématiques de l'Université de Nancago, VI, Hermann ( 1958). Zbl0137.41103MR111056
- [30] S.T. YAU, On Calabi's conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. USA 74 ( 1977), 1798-1799. Zbl0355.32028MR451180
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.