Géométrie hyperkählérienne des espaces hermitiens symétriques complexifiés

Olivier Biquard; Paul Gauduchon

Séminaire de théorie spectrale et géométrie (1997-1998)

  • Volume: 16, page 127-173
  • ISSN: 1624-5458

How to cite

top

Biquard, Olivier, and Gauduchon, Paul. "Géométrie hyperkählérienne des espaces hermitiens symétriques complexifiés." Séminaire de théorie spectrale et géométrie 16 (1997-1998): 127-173. <http://eudml.org/doc/114419>.

@article{Biquard1997-1998,
author = {Biquard, Olivier, Gauduchon, Paul},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {hyper-Kähler metric; hyper-Kähler manifold; moment mapping; Hermitian symmetric space; complex Grassmannian; Eguchi-Hanson metric; Kobak-Swann formula},
language = {fre},
pages = {127-173},
publisher = {Institut Fourier},
title = {Géométrie hyperkählérienne des espaces hermitiens symétriques complexifiés},
url = {http://eudml.org/doc/114419},
volume = {16},
year = {1997-1998},
}

TY - JOUR
AU - Biquard, Olivier
AU - Gauduchon, Paul
TI - Géométrie hyperkählérienne des espaces hermitiens symétriques complexifiés
JO - Séminaire de théorie spectrale et géométrie
PY - 1997-1998
PB - Institut Fourier
VL - 16
SP - 127
EP - 173
LA - fre
KW - hyper-Kähler metric; hyper-Kähler manifold; moment mapping; Hermitian symmetric space; complex Grassmannian; Eguchi-Hanson metric; Kobak-Swann formula
UR - http://eudml.org/doc/114419
ER -

References

top
  1. [1] M.F. ATIYAH, N.J. HITCHIN and I.M SINGER, Self-duality in four-dimensional Riemannian geometry, Proc, R. Soc. Lond. A 362 ( 1978), 425-461. Zbl0389.53011MR506229
  2. [2] A. BEAUVILLE, Variétés kählériennes dont la première classe de Chern est nulle, J. Diff. Geom. 18 ( 1990), 211-235. Zbl0537.53056MR730926
  3. [3] A.L. BESSE, Einstein manifolds. Erg. der Math. 10, Springer-Verlag ( 1987). Zbl0613.53001MR867684
  4. [4] O. BIQUARO, Sur les équations de Nahm et la structure de Poisson des algèbres de Lie semi-simples complexes, Math. Ann. 304 ( 1996), 253-276. Zbl0843.53027MR1371766
  5. [5] O. BIQUABD, Twisteurs des orbites coadjointes et métriques hyper-pseudokählériennes, Bull. Soc. Math. France 126 ( 1998), 79-105. Zbl0929.53024MR1651382
  6. [6] O. BIQUARD and P. GAUDUCHON, Hyperkähler metrics on cotangent bundles of hermitian symmetric spaces, in Geometry and Physics, J. Andersen, J. Dupont, H. Pedersen and A. Swann, editors, Lect. Notes PureAppl Math. Ser. 184, Marcel Dekker ( 1996), 287-298. Zbl0879.53051MR1423175
  7. [7] O. BIQUARD et P. GAUDUCHON, La métrique hyperkählérienne des orbites coadjointes de type symétrique d'un groupe de Lie complexe semi-simple, C.R. Acad. Sci. Paris, t. 323, série I ( 1996), 1259-1264. Zbl0866.58007MR1428547
  8. [8] D. BURNS, Some examples of the twistor construction, dans Contributions to several complex variables, in honor of Wilhelm Stoll (eds. A. Howard and RM.Wong), Vieweg ( 1986), 51-67. Zbl0596.53057MR859192
  9. [9] E. CALABI, Métriques kählériennes et fibrés holomorphes, Ann. Ec. Norm. Sup. 12 ( 1979), 269-294. Zbl0431.53056MR543218
  10. [10] A. DANCER and R. SZÖKE, Symmetric spaces, adapted complex structures and hyperkähler structures, Q. J. Math., Oxford II, Series 48,189 ( 1997), 27-38. Zbl0879.32025MR1439696
  11. [11] S.K. DONALDSON, Nahm's equations and the classification of monopoles, Comm. Math. Phys. 96 ( 1984), 387-407. Zbl0603.58042MR769355
  12. [12] T. EGUCHI and A.J. HANSON, Asymptotically flat self-dual solutions to Euclidean gravity, Phys. Lett. 74B ( 1978), 249-251. 
  13. [13] G.W. GIBBONS and S. HAWKING, Gravitational multi-instantons, phys. Lett. 78B ( 1978), 430-432. 
  14. [14] R. GODEMENT, Introduction à la théorie des groupes de Lie, Publications mathématiques de l'Université Paris 7,11-12 ( 1982). Zbl0533.22001
  15. [15] V. GUILLEMIN and S. STERNBERG, Convexity Properties of the Moment Mapping, Inv. Math. 67 ( 1982), 491-513. Zbl0503.58017MR664117
  16. [16] N.J. HITCHIN, Monopoles, minimal surfaces and Algebraic curves, Presses Universitaires de Montréal, 105 ( 1987). Zbl0644.53059MR935967
  17. [17] N.J. HITCHIN, Hyperkähler manifolds, Séminaire Bourbaki, exposé 748 ( 1991). Zbl0979.53051
  18. [18] N.J. HITCHIN, Integrables systems in Riemannian geometry Zbl0939.37039
  19. [19] N.J. HITCHIN, A. KARLHEDE, U. LINDSTRÖM and M. ROCEK, Hyperkähler metrics and supersymmetry, Comm. Math. Phys. 108 ( 1987), 535-589. Zbl0612.53043MR877637
  20. [20] D. KALEDIN, Hyperkäher structures on total spaces of holomorphic cotangenl bundles, Preprint ( 1997), alg-geom/9710026. 
  21. [21] P. KOBAK and A. SWANN, Quaternionic geometry of a nilpotent variety, Math. Ann. 297 ( 1993), 747-764. Zbl0807.53040MR1245417
  22. [22] T. KOBAYASHI, Proper action on a homogeneous space of reductive type, Math. Ann. 285 ( 1989), 249-263. Zbl0662.22008MR1016093
  23. [23] S. KOBAYASHI and K. NOMIZU, Foundations of Differential Geometry, II, Interscience Tracts in Pure and Appl. Math. 15, II, Interscience Publishers, Wiley ( 1969) Zbl0175.48504
  24. [24] S. KOBAYASHI and H. Wu, On holomorphic sections of certain Hermitian vector bundles, Math. Ann.189 ( 1970), 1-4. Zbl0189.52201MR270392
  25. [25] A.G. KOVALEV, Nahm's equations and complex adjoint orbits, Quat. J. Math. Oxford 47 ( 1996), 41-58. Zbl0852.53033MR1380949
  26. [26] P.B. KRONHEIMER, Instantons and the geometry of the nilpotent variety, J. Diff. Geom. 32 ( 1990), 473-490. Zbl0725.58007MR1072915
  27. [27] P.B. KRONHEIMER, A hyperkähler structure on coadjoint orbits of a semi-simple Lie group, J. London Math. Soc. 42 ( 1990), 193-208. Zbl0721.22006MR1083440
  28. [28] S. SANTA CRUZ, Construction of hyperkähler metrics for complex adjoint orbits, Ph. D. thesis, Univ. of Warwick, Sept. 1995. Zbl0924.53034
  29. [29] A. WEIL, Introduction à l'étude des variétés kählériennes, Publications de l'Institut de Mathématiques de l'Université de Nancago, VI, Hermann ( 1958). Zbl0137.41103MR111056
  30. [30] S.T. YAU, On Calabi's conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. USA 74 ( 1977), 1798-1799. Zbl0355.32028MR451180

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.