Semi-algebraic neighborhoods of closed semi-algebraic sets
- [1] Université de Provence Centre de Mathématiques et Informatique 39 rue Joliot-Curie 13453 Marseille Cedex 13 (France)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 1, page 429-458
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDutertre, Nicolas. "Semi-algebraic neighborhoods of closed semi-algebraic sets." Annales de l’institut Fourier 59.1 (2009): 429-458. <http://eudml.org/doc/10398>.
@article{Dutertre2009,
abstract = {Given a closed (not necessarly compact) semi-algebraic set $X$ in $\mathbb\{R\}^n$, we construct a non-negative semi-algebraic $\{\mathcal\{C\}\}^2$ function $f$ such that $\{X\{=\}f^\{-1\}(0)\}$ and such that for $\delta >0$ sufficiently small, the inclusion of $X$ in $f^\{-1\}([0,\delta ])$ is a retraction. As a corollary, we obtain several formulas for the Euler characteristic of $X$.},
affiliation = {Université de Provence Centre de Mathématiques et Informatique 39 rue Joliot-Curie 13453 Marseille Cedex 13 (France)},
author = {Dutertre, Nicolas},
journal = {Annales de l’institut Fourier},
keywords = {Tubular neighborhood; semi-algebraic sets; retraction; quasiregular approaching semi-algebraic function; quasiregular approaching semi-algebraic neighborhood; tubular neighborhood; regular approaching semi-algebraic neighborhood},
language = {eng},
number = {1},
pages = {429-458},
publisher = {Association des Annales de l’institut Fourier},
title = {Semi-algebraic neighborhoods of closed semi-algebraic sets},
url = {http://eudml.org/doc/10398},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Dutertre, Nicolas
TI - Semi-algebraic neighborhoods of closed semi-algebraic sets
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 1
SP - 429
EP - 458
AB - Given a closed (not necessarly compact) semi-algebraic set $X$ in $\mathbb{R}^n$, we construct a non-negative semi-algebraic ${\mathcal{C}}^2$ function $f$ such that ${X{=}f^{-1}(0)}$ and such that for $\delta >0$ sufficiently small, the inclusion of $X$ in $f^{-1}([0,\delta ])$ is a retraction. As a corollary, we obtain several formulas for the Euler characteristic of $X$.
LA - eng
KW - Tubular neighborhood; semi-algebraic sets; retraction; quasiregular approaching semi-algebraic function; quasiregular approaching semi-algebraic neighborhood; tubular neighborhood; regular approaching semi-algebraic neighborhood
UR - http://eudml.org/doc/10398
ER -
References
top- V. I. Arnold, Index of a singular point of a vector field, the Petrovski-Oleinik inequality, and mixed Hodge structures, Funct. Anal. Appl. 12 (1978), 1-14 Zbl0407.57025MR498592
- J. Bochnak, M. Coste, M. F. Roy, Géométrie algébrique réelle, 12 (1987), Springer-Verlag Zbl0633.14016MR949442
- L. Broecker, M. Kuppe, Integral geometry of tame sets, Geom. Dedicata 82 (2000), 285-323 Zbl1023.53057MR1789065
- S. A. Broughton, On the topology of polynomial hypersurfaces, Singularities, Part 1 (Arcata, Calif., 1981), pp.167–178, Proc. Sympos. Pure Math. 40 (1983), Amer. Math. Soc., Providence, RI Zbl0526.14010MR713056
- M. Coste, An introduction to o-minimal geometry, in Dottorato di Recerca in Matematica, (2000)
- M Coste, An introduction to semi-algebraic geometry, in Dottorato di Recerca in Matematica, (2000)
- M. Coste, M. Reguiat, Trivialités en famille, in Real algebraic geometry (Rennes, 1991), pp.193–204, 1524 (1992), Springer, Berlin Zbl0801.14016MR1226253
- A. H. Durfee, Neighborhoods of algebraic sets, Trans. Amer. Math. Soc. 276 (1983), 517-530 Zbl0529.14013MR688959
- N. Dutertre, Geometrical and topological properties of real polynomial fibres, Geom. Dedicata 105 (2004), 43-59 Zbl1060.14081MR2057243
- A. Fekak, Exposants de Lojasiewicz pour les fonctions semi-algébriques, Ann. Polon. Math. 56 (1992), 123-131 Zbl0773.14027MR1159983
- V. M. Kharlamov, A generalized Petrovskii inequality, Funct. Anal. Appl. 8 (1974), 50-56 Zbl0301.14021MR350056
- V. M. Kharlamov, A generalized Petrovskii inequality II, Funct. Anal. Appl. 9 (1975), 93-94 Zbl0327.14018MR399502
- G. M. Khimshiashvili, On the local degree of a smooth map, Soobshch. Akad. Nauk Gruz. SSR 85 (1977), 309-311 Zbl0346.55008
- A. G. Khovanskii, Index of a polynomial vector field, Funct. Anal. Appl. 13 (1978), 38-45 Zbl0437.57012MR527521
- A. G. Khovanskii, Boundary indices of polynomial -forms with homogeneous components, St. Petersburg Math. J. 10 (1999), 553-575 Zbl0990.37040MR1628042
- K. Kurdyka, On gradients of functions definable in o-minimal structures, Ann. Inst. Fourier 48 (1998), 769-783 Zbl0934.32009MR1644089
- K. Kurdyka, T. Mostowski, A. Parusinski, Proof of the gradient conjecture of R. Thom, Ann. of Math. (2) 152 (2000), 763-792 Zbl1053.37008MR1815701
- K. Kurdyka, A. Parusinski, -stratification of subanalytic functions and the Lojasiewicz inequality, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), 129-133 Zbl0799.32007MR1260324
- S. Lojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, Colloques Internationaux du CNRS, Les équations aux dérivées partielles, éd. B. Malgrange (Paris 1962), 117 (1963), Publications du CNRS, Paris Zbl0234.57007MR160856
- S. Lojasiewicz, Sur les trajectoires du gradient d’une fonction analytique réelle, Seminari di Geometria 1982–1983, Bologna (1984), 115-117 Zbl0606.58045MR771152
- A. Nemethi, A. Zaharia, Milnor fibration at infinity, Indag. Math. 3 (1992), 323-335 Zbl0806.57021MR1186741
- A. Nowel, Z. Szafraniec, On trajectories of analytic gradient vector fields, J. Differential Equations 184 (2002), 215-223 Zbl1066.58022MR1929153
- O. A. Oleinik, I. G. Petrovskii, On the topology of real algebraic surfaces, 70 (1952), Amer. Math. Soc. MR48095
- Mihai Tibăr, Regularity at infinity of real and complex polynomial functions, Singularity theory (Liverpool, 1996) 263 (1999), xx, 249-264, Cambridge Univ. Press Zbl0930.58005MR1709356
- L. Van den Dries, C. Miller, Geometric categories and -minimal structures, Duke Math. J. 84 (1996), 497-540 Zbl0889.03025MR1404337
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.