Semi-algebraic neighborhoods of closed semi-algebraic sets

Nicolas Dutertre[1]

  • [1] Université de Provence Centre de Mathématiques et Informatique 39 rue Joliot-Curie 13453 Marseille Cedex 13 (France)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 1, page 429-458
  • ISSN: 0373-0956

Abstract

top
Given a closed (not necessarly compact) semi-algebraic set X in n , we construct a non-negative semi-algebraic 𝒞 2 function f such that X = f - 1 ( 0 ) and such that for δ > 0 sufficiently small, the inclusion of X in f - 1 ( [ 0 , δ ] ) is a retraction. As a corollary, we obtain several formulas for the Euler characteristic of  X .

How to cite

top

Dutertre, Nicolas. "Semi-algebraic neighborhoods of closed semi-algebraic sets." Annales de l’institut Fourier 59.1 (2009): 429-458. <http://eudml.org/doc/10398>.

@article{Dutertre2009,
abstract = {Given a closed (not necessarly compact) semi-algebraic set $X$ in $\mathbb\{R\}^n$, we construct a non-negative semi-algebraic $\{\mathcal\{C\}\}^2$ function $f$ such that $\{X\{=\}f^\{-1\}(0)\}$ and such that for $\delta &gt;0$ sufficiently small, the inclusion of $X$ in $f^\{-1\}([0,\delta ])$ is a retraction. As a corollary, we obtain several formulas for the Euler characteristic of $X$.},
affiliation = {Université de Provence Centre de Mathématiques et Informatique 39 rue Joliot-Curie 13453 Marseille Cedex 13 (France)},
author = {Dutertre, Nicolas},
journal = {Annales de l’institut Fourier},
keywords = {Tubular neighborhood; semi-algebraic sets; retraction; quasiregular approaching semi-algebraic function; quasiregular approaching semi-algebraic neighborhood; tubular neighborhood; regular approaching semi-algebraic neighborhood},
language = {eng},
number = {1},
pages = {429-458},
publisher = {Association des Annales de l’institut Fourier},
title = {Semi-algebraic neighborhoods of closed semi-algebraic sets},
url = {http://eudml.org/doc/10398},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Dutertre, Nicolas
TI - Semi-algebraic neighborhoods of closed semi-algebraic sets
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 1
SP - 429
EP - 458
AB - Given a closed (not necessarly compact) semi-algebraic set $X$ in $\mathbb{R}^n$, we construct a non-negative semi-algebraic ${\mathcal{C}}^2$ function $f$ such that ${X{=}f^{-1}(0)}$ and such that for $\delta &gt;0$ sufficiently small, the inclusion of $X$ in $f^{-1}([0,\delta ])$ is a retraction. As a corollary, we obtain several formulas for the Euler characteristic of $X$.
LA - eng
KW - Tubular neighborhood; semi-algebraic sets; retraction; quasiregular approaching semi-algebraic function; quasiregular approaching semi-algebraic neighborhood; tubular neighborhood; regular approaching semi-algebraic neighborhood
UR - http://eudml.org/doc/10398
ER -

References

top
  1. V. I. Arnold, Index of a singular point of a vector field, the Petrovski-Oleinik inequality, and mixed Hodge structures, Funct. Anal. Appl. 12 (1978), 1-14 Zbl0407.57025MR498592
  2. J. Bochnak, M. Coste, M. F. Roy, Géométrie algébrique réelle, 12 (1987), Springer-Verlag Zbl0633.14016MR949442
  3. L. Broecker, M. Kuppe, Integral geometry of tame sets, Geom. Dedicata 82 (2000), 285-323 Zbl1023.53057MR1789065
  4. S. A. Broughton, On the topology of polynomial hypersurfaces, Singularities, Part 1 (Arcata, Calif., 1981), pp.167–178, Proc. Sympos. Pure Math. 40 (1983), Amer. Math. Soc., Providence, RI Zbl0526.14010MR713056
  5. M. Coste, An introduction to o-minimal geometry, in Dottorato di Recerca in Matematica, (2000) 
  6. M Coste, An introduction to semi-algebraic geometry, in Dottorato di Recerca in Matematica, (2000) 
  7. M. Coste, M. Reguiat, Trivialités en famille, in Real algebraic geometry (Rennes, 1991), pp.193–204, 1524 (1992), Springer, Berlin Zbl0801.14016MR1226253
  8. A. H. Durfee, Neighborhoods of algebraic sets, Trans. Amer. Math. Soc. 276 (1983), 517-530 Zbl0529.14013MR688959
  9. N. Dutertre, Geometrical and topological properties of real polynomial fibres, Geom. Dedicata 105 (2004), 43-59 Zbl1060.14081MR2057243
  10. A. Fekak, Exposants de Lojasiewicz pour les fonctions semi-algébriques, Ann. Polon. Math. 56 (1992), 123-131 Zbl0773.14027MR1159983
  11. V. M. Kharlamov, A generalized Petrovskii inequality, Funct. Anal. Appl. 8 (1974), 50-56 Zbl0301.14021MR350056
  12. V. M. Kharlamov, A generalized Petrovskii inequality II, Funct. Anal. Appl. 9 (1975), 93-94 Zbl0327.14018MR399502
  13. G. M. Khimshiashvili, On the local degree of a smooth map, Soobshch. Akad. Nauk Gruz. SSR 85 (1977), 309-311 Zbl0346.55008
  14. A. G. Khovanskii, Index of a polynomial vector field, Funct. Anal. Appl. 13 (1978), 38-45 Zbl0437.57012MR527521
  15. A. G. Khovanskii, Boundary indices of polynomial 1 -forms with homogeneous components, St. Petersburg Math. J. 10 (1999), 553-575 Zbl0990.37040MR1628042
  16. K. Kurdyka, On gradients of functions definable in o-minimal structures, Ann. Inst. Fourier 48 (1998), 769-783 Zbl0934.32009MR1644089
  17. K. Kurdyka, T. Mostowski, A. Parusinski, Proof of the gradient conjecture of R. Thom, Ann. of Math. (2) 152 (2000), 763-792 Zbl1053.37008MR1815701
  18. K. Kurdyka, A. Parusinski, w f -stratification of subanalytic functions and the Lojasiewicz inequality, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), 129-133 Zbl0799.32007MR1260324
  19. S. Lojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, Colloques Internationaux du CNRS, Les équations aux dérivées partielles, éd. B. Malgrange (Paris 1962), 117 (1963), Publications du CNRS, Paris Zbl0234.57007MR160856
  20. S. Lojasiewicz, Sur les trajectoires du gradient d’une fonction analytique réelle, Seminari di Geometria 1982–1983, Bologna (1984), 115-117 Zbl0606.58045MR771152
  21. A. Nemethi, A. Zaharia, Milnor fibration at infinity, Indag. Math. 3 (1992), 323-335 Zbl0806.57021MR1186741
  22. A. Nowel, Z. Szafraniec, On trajectories of analytic gradient vector fields, J. Differential Equations 184 (2002), 215-223 Zbl1066.58022MR1929153
  23. O. A. Oleinik, I. G. Petrovskii, On the topology of real algebraic surfaces, 70 (1952), Amer. Math. Soc. MR48095
  24. Mihai Tibăr, Regularity at infinity of real and complex polynomial functions, Singularity theory (Liverpool, 1996) 263 (1999), xx, 249-264, Cambridge Univ. Press Zbl0930.58005MR1709356
  25. L. Van den Dries, C. Miller, Geometric categories and o -minimal structures, Duke Math. J. 84 (1996), 497-540 Zbl0889.03025MR1404337

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.