On gradients of functions definable in o-minimal structures

Krzysztof Kurdyka

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 3, page 769-783
  • ISSN: 0373-0956

Abstract

top
We prove the o-minimal generalization of the Łojasiewicz inequality grad f | f | α , with α < 1 , in a neighborhood of a , where f is real analytic at a and f ( a ) = 0 . We deduce, as in the analytic case, that trajectories of the gradient of a function definable in an o-minimal structure are of uniformly bounded length. We obtain also that the gradient flow gives a retraction onto levels of such functions.

How to cite

top

Kurdyka, Krzysztof. "On gradients of functions definable in o-minimal structures." Annales de l'institut Fourier 48.3 (1998): 769-783. <http://eudml.org/doc/75302>.

@article{Kurdyka1998,
abstract = {We prove the o-minimal generalization of the Łojasiewicz inequality $\Vert \{\rm grad\}\, f\Vert \ge |f|^\alpha $, with $\alpha &lt; 1$, in a neighborhood of $a$, where $f$ is real analytic at $a$ and $f(a)=0$. We deduce, as in the analytic case, that trajectories of the gradient of a function definable in an o-minimal structure are of uniformly bounded length. We obtain also that the gradient flow gives a retraction onto levels of such functions.},
author = {Kurdyka, Krzysztof},
journal = {Annales de l'institut Fourier},
keywords = {flows of gradient; -minimal structure; subanalytic sets; Łojasiewicz inequalities; trajectories of gradient},
language = {eng},
number = {3},
pages = {769-783},
publisher = {Association des Annales de l'Institut Fourier},
title = {On gradients of functions definable in o-minimal structures},
url = {http://eudml.org/doc/75302},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Kurdyka, Krzysztof
TI - On gradients of functions definable in o-minimal structures
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 3
SP - 769
EP - 783
AB - We prove the o-minimal generalization of the Łojasiewicz inequality $\Vert {\rm grad}\, f\Vert \ge |f|^\alpha $, with $\alpha &lt; 1$, in a neighborhood of $a$, where $f$ is real analytic at $a$ and $f(a)=0$. We deduce, as in the analytic case, that trajectories of the gradient of a function definable in an o-minimal structure are of uniformly bounded length. We obtain also that the gradient flow gives a retraction onto levels of such functions.
LA - eng
KW - flows of gradient; -minimal structure; subanalytic sets; Łojasiewicz inequalities; trajectories of gradient
UR - http://eudml.org/doc/75302
ER -

References

top
  1. [BM] E. BIERSTONE P.D. MILMAN, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math., 67 (1988), 5-42. Zbl0674.32002MR89k:32011
  2. [BCR] J. BOCHNAK, M. COSTE, M.-F. ROY, Géométrie algébrique réelle, Springer, 1987. Zbl0633.14016MR90b:14030
  3. [vD] L. van den DRIES, Remarks on Tarski's problem concerning (ℝ, +,.), Logic Colloquium 1982, (eds: G. Lolli, G. Longo, A. Marcja), North Holland, Amsterdam, 1984, 97-121. Zbl0585.03006MR86g:03052
  4. [DMM] L. van den DRIES, A. MACINTYRE, D. MARKER, The elementary theory of restricted analytic fields with exponentiation, Ann. of Math., 140 (1994), 183-205. Zbl0837.12006MR95k:12015
  5. [DM] L. van den DRIES, C. MILLER, Geometric categories and o-minimal structures, Duke Math. J., 84, No 2 (1996), 497-540. Zbl0889.03025MR97i:32008
  6. [DS] L. van den DRIES, P. SPEISSEGGER, The real field with generalized power series is model complete and o-minimal, Trans. AMS (to appear). Zbl0905.03022
  7. [Hu] X. HU, Sur la structure des champs de gradients de fonctions analytiques réelles, Thèse Université Paris 7 (1992). 
  8. [KŁZ] K. KURDYKA, S. ŁOJASIEWICZ, M. ZURRO, Stratifications distinguées comme outil en géométrie semi-analytique, Manuscripta Math., 186 (1995), 81-102. Zbl0817.32005MR96a:32013
  9. [KM] K. KURDYKA, T. MOSTOWSKI, The Gradient Conjecture of R. Thom, preprint (1996). Zbl1053.37008
  10. [KP] K. KURDYKA, A. PARUSIŃSKI, wf-stratification of subanalytic functions and the Łojasiewicz inequality, C. R. Acad. Sci. Paris, 318, Série I (1994), 129-133. Zbl0799.32007MR95d:32012
  11. [LR1] J-M. LION, J.-P. ROLIN, Théorème de préparation pour les fonctions logarithmico-exponentielles, Ann. Inst. Fourier, Grenoble, 47-3 (1997), 852-884. Zbl0873.32004MR98h:32009
  12. [LR2] J-M. LION, J.-P. ROLIN, Théorème de Gabrielov et fonctions log-exp-algébriques, preprint (1996). 
  13. [Lo] T. LOI, On the global Łojasiewicz inequalities for the class of analytic logarithmic-exponential functions, Ann. Inst. Fourier, Grenoble, 45-4 (1995), 951-971. 
  14. [Ł1] S. ŁOJASIEWICZ, Une propriété topologique des sous-ensembles analytiques réels, Colloques Internationaux du CNRS, Les équations aux dérivées partielles, vol 117, ed. B. Malgrange (Paris 1962), Publications du CNRS, Paris, 1963. Zbl0234.57007MR28 #4066
  15. [Ł2] S. ŁOJASIEWICZ, Ensembles semi-analytiques, Inst. Hautes Études Sci., Bures-sur-Yvette, 1965. 
  16. [Ł3] S. ŁOJASIEWICZ, Sur les trajectoires du gradient d'une fonction analytique réelle, Seminari di Geometria 1982-1983, Bologna, 1984, 115-117. Zbl0606.58045MR86m:58023
  17. [Ł4] S. ŁOJASIEWICZ, Sur la géométrie semi- et sous-analytique, Ann. Inst. Fourier, Grenoble, 43-5 (1993), 1575-1595. Zbl0803.32002MR96c:32007
  18. [Mi] C. MILLER, Expansion of the real field with power functions, Ann. Pure Appl. Logic, 68 (1994), 79-94. Zbl0823.03018MR95i:03081
  19. [S1] M. SHIOTA, Geometry of subanalytic and semialgebraic sets: abstract, Real analytic and algebraic geometry, Trento 1992, eds. F. Broglia, M. Galbiati, A. Tognoli, W. de Gruyter, Berlin, 1995, 251-276. Zbl0870.32001MR96b:14069
  20. [S2] M. SHIOTA, Geometry of subanalytic and semialgebraic sets, Birkhauser, 1997. Zbl0889.32006MR99b:14061
  21. [Si] L. SIMON, Asymptotics for a class of non-linear evolution equations, with applications to geometric problems, Ann. of Math., 118 (1983), 527-571. Zbl0549.35071MR85b:58121
  22. [Sj] R. SJAMAAR, Convexity properties of the moment mapping re-examined, Adv. of Math., to appear. Zbl0915.58036
  23. [W1] A. WILKIE, Model completness results for expansions of the ordered field of reals by restricted Pffafian functions and the exponential function, J. Amer. Math. Soc., 9 (1996), 1051-1094. Zbl0892.03013MR98j:03052
  24. [W2] A. WILKIE, A general theorem of the complement and some new o-minimal structures, manuscript (1996). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.