On gradients of functions definable in o-minimal structures
Annales de l'institut Fourier (1998)
- Volume: 48, Issue: 3, page 769-783
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKurdyka, Krzysztof. "On gradients of functions definable in o-minimal structures." Annales de l'institut Fourier 48.3 (1998): 769-783. <http://eudml.org/doc/75302>.
@article{Kurdyka1998,
abstract = {We prove the o-minimal generalization of the Łojasiewicz inequality $\Vert \{\rm grad\}\, f\Vert \ge |f|^\alpha $, with $\alpha < 1$, in a neighborhood of $a$, where $f$ is real analytic at $a$ and $f(a)=0$. We deduce, as in the analytic case, that trajectories of the gradient of a function definable in an o-minimal structure are of uniformly bounded length. We obtain also that the gradient flow gives a retraction onto levels of such functions.},
author = {Kurdyka, Krzysztof},
journal = {Annales de l'institut Fourier},
keywords = {flows of gradient; -minimal structure; subanalytic sets; Łojasiewicz inequalities; trajectories of gradient},
language = {eng},
number = {3},
pages = {769-783},
publisher = {Association des Annales de l'Institut Fourier},
title = {On gradients of functions definable in o-minimal structures},
url = {http://eudml.org/doc/75302},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Kurdyka, Krzysztof
TI - On gradients of functions definable in o-minimal structures
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 3
SP - 769
EP - 783
AB - We prove the o-minimal generalization of the Łojasiewicz inequality $\Vert {\rm grad}\, f\Vert \ge |f|^\alpha $, with $\alpha < 1$, in a neighborhood of $a$, where $f$ is real analytic at $a$ and $f(a)=0$. We deduce, as in the analytic case, that trajectories of the gradient of a function definable in an o-minimal structure are of uniformly bounded length. We obtain also that the gradient flow gives a retraction onto levels of such functions.
LA - eng
KW - flows of gradient; -minimal structure; subanalytic sets; Łojasiewicz inequalities; trajectories of gradient
UR - http://eudml.org/doc/75302
ER -
References
top- [BM] E. BIERSTONE P.D. MILMAN, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math., 67 (1988), 5-42. Zbl0674.32002MR89k:32011
- [BCR] J. BOCHNAK, M. COSTE, M.-F. ROY, Géométrie algébrique réelle, Springer, 1987. Zbl0633.14016MR90b:14030
- [vD] L. van den DRIES, Remarks on Tarski's problem concerning (ℝ, +,.), Logic Colloquium 1982, (eds: G. Lolli, G. Longo, A. Marcja), North Holland, Amsterdam, 1984, 97-121. Zbl0585.03006MR86g:03052
- [DMM] L. van den DRIES, A. MACINTYRE, D. MARKER, The elementary theory of restricted analytic fields with exponentiation, Ann. of Math., 140 (1994), 183-205. Zbl0837.12006MR95k:12015
- [DM] L. van den DRIES, C. MILLER, Geometric categories and o-minimal structures, Duke Math. J., 84, No 2 (1996), 497-540. Zbl0889.03025MR97i:32008
- [DS] L. van den DRIES, P. SPEISSEGGER, The real field with generalized power series is model complete and o-minimal, Trans. AMS (to appear). Zbl0905.03022
- [Hu] X. HU, Sur la structure des champs de gradients de fonctions analytiques réelles, Thèse Université Paris 7 (1992).
- [KŁZ] K. KURDYKA, S. ŁOJASIEWICZ, M. ZURRO, Stratifications distinguées comme outil en géométrie semi-analytique, Manuscripta Math., 186 (1995), 81-102. Zbl0817.32005MR96a:32013
- [KM] K. KURDYKA, T. MOSTOWSKI, The Gradient Conjecture of R. Thom, preprint (1996). Zbl1053.37008
- [KP] K. KURDYKA, A. PARUSIŃSKI, wf-stratification of subanalytic functions and the Łojasiewicz inequality, C. R. Acad. Sci. Paris, 318, Série I (1994), 129-133. Zbl0799.32007MR95d:32012
- [LR1] J-M. LION, J.-P. ROLIN, Théorème de préparation pour les fonctions logarithmico-exponentielles, Ann. Inst. Fourier, Grenoble, 47-3 (1997), 852-884. Zbl0873.32004MR98h:32009
- [LR2] J-M. LION, J.-P. ROLIN, Théorème de Gabrielov et fonctions log-exp-algébriques, preprint (1996).
- [Lo] T. LOI, On the global Łojasiewicz inequalities for the class of analytic logarithmic-exponential functions, Ann. Inst. Fourier, Grenoble, 45-4 (1995), 951-971.
- [Ł1] S. ŁOJASIEWICZ, Une propriété topologique des sous-ensembles analytiques réels, Colloques Internationaux du CNRS, Les équations aux dérivées partielles, vol 117, ed. B. Malgrange (Paris 1962), Publications du CNRS, Paris, 1963. Zbl0234.57007MR28 #4066
- [Ł2] S. ŁOJASIEWICZ, Ensembles semi-analytiques, Inst. Hautes Études Sci., Bures-sur-Yvette, 1965.
- [Ł3] S. ŁOJASIEWICZ, Sur les trajectoires du gradient d'une fonction analytique réelle, Seminari di Geometria 1982-1983, Bologna, 1984, 115-117. Zbl0606.58045MR86m:58023
- [Ł4] S. ŁOJASIEWICZ, Sur la géométrie semi- et sous-analytique, Ann. Inst. Fourier, Grenoble, 43-5 (1993), 1575-1595. Zbl0803.32002MR96c:32007
- [Mi] C. MILLER, Expansion of the real field with power functions, Ann. Pure Appl. Logic, 68 (1994), 79-94. Zbl0823.03018MR95i:03081
- [S1] M. SHIOTA, Geometry of subanalytic and semialgebraic sets: abstract, Real analytic and algebraic geometry, Trento 1992, eds. F. Broglia, M. Galbiati, A. Tognoli, W. de Gruyter, Berlin, 1995, 251-276. Zbl0870.32001MR96b:14069
- [S2] M. SHIOTA, Geometry of subanalytic and semialgebraic sets, Birkhauser, 1997. Zbl0889.32006MR99b:14061
- [Si] L. SIMON, Asymptotics for a class of non-linear evolution equations, with applications to geometric problems, Ann. of Math., 118 (1983), 527-571. Zbl0549.35071MR85b:58121
- [Sj] R. SJAMAAR, Convexity properties of the moment mapping re-examined, Adv. of Math., to appear. Zbl0915.58036
- [W1] A. WILKIE, Model completness results for expansions of the ordered field of reals by restricted Pffafian functions and the exponential function, J. Amer. Math. Soc., 9 (1996), 1051-1094. Zbl0892.03013MR98j:03052
- [W2] A. WILKIE, A general theorem of the complement and some new o-minimal structures, manuscript (1996).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.