Bifurcations de points fixes elliptiques - III. Orbites périodiques de «petites» périodes et élimination résonnante des couples de courbes invariantes

Alain Chenciner

Publications Mathématiques de l'IHÉS (1987)

  • Volume: 66, page 5-91
  • ISSN: 0073-8301

How to cite

top

Chenciner, Alain. "Bifurcations de points fixes elliptiques - III. Orbites périodiques de «petites» périodes et élimination résonnante des couples de courbes invariantes." Publications Mathématiques de l'IHÉS 66 (1987): 5-91. <http://eudml.org/doc/104028>.

@article{Chenciner1987,
author = {Chenciner, Alain},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {resonance; map; iteration; invariant sets; rotation number; diffeomorphism; periodic orbit; bifurcation},
language = {fre},
pages = {5-91},
publisher = {Institut des Hautes Études Scientifiques},
title = {Bifurcations de points fixes elliptiques - III. Orbites périodiques de «petites» périodes et élimination résonnante des couples de courbes invariantes},
url = {http://eudml.org/doc/104028},
volume = {66},
year = {1987},
}

TY - JOUR
AU - Chenciner, Alain
TI - Bifurcations de points fixes elliptiques - III. Orbites périodiques de «petites» périodes et élimination résonnante des couples de courbes invariantes
JO - Publications Mathématiques de l'IHÉS
PY - 1987
PB - Institut des Hautes Études Scientifiques
VL - 66
SP - 5
EP - 91
LA - fre
KW - resonance; map; iteration; invariant sets; rotation number; diffeomorphism; periodic orbit; bifurcation
UR - http://eudml.org/doc/104028
ER -

References

top
  1. [1] V. I. ARNOLD, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir, 1980. Zbl0455.34001MR83a:34003
  2. [2] D. G. ARONSON, M. A. CHORY, G. R. HALL, R. P. MCGEHEE, Bifurcations from an invariant circle for 2-parameter families of maps of the plane : a computer assisted study, Commun. Math. Phys., 83 (1983), 303-354. Zbl0499.70034MR83j:58078
  3. [2 bis] G. D. BIRKHOFF, Sur certaines courbes fermées remarquables, Bull. Soc. Math. de France, 60 (1932), 1-26. Zbl0005.22002JFM58.0633.01
  4. [2 ter] P. BOYLAND et G. R. HALL, Invariant circles and the order structure of periodic orbits in monotone twist maps, Topology, à paraître. Zbl0618.58032
  5. [2 quarto] H. BROER et F. TAKENS, Formally symmetric normal forms and genericity, Prépublication Université de Groningen, 1986. Zbl0704.58047
  6. [3] A. CHENCINER, Points homoclines au voisinage d'une bifurcation de Hopf dégénérée de difféomorphismes de R2, C.R.A.S., Série I, 294 (1982), 269-272. Zbl0509.58014MR83h:58066
  7. [4] A. CHENCINER, Bifurcations de difféomorphismes de R2 au voisinage d'un point fixe elliptique, in Les Houches Session XXXVI, 1981, Comportement chaotique des systèmes déterministes, Iooss, Helleman, Stora édit., North Holland, 1983, 273-348. Zbl0582.58025MR85j:58114
  8. [5] A. CHENCINER, Bifurcations de points fixes elliptiques. I : Courbes invariantes, Publications Math. de l'I.H.E.S., 61 (1985), 67-127. Zbl0566.58025MR86k:58089a
  9. [6] A. CHENCINER, Bifurcations de points fixes elliptiques. II : Orbites périodiques et ensembles de Cantor invariants, Inventiones Math., 80 (1985), 81-106. Zbl0578.58031MR86k:58089b
  10. [7] A. CHENCINER, Resonant elimination of a couple of invariant closed curves in the neighborhood of a degenerate Hopf bifurcation of diffeomorphisms of R2, IIASA Workshop on dynamic processes, Sopron, septembre 1985, Springer L.N. in Economics and Mathematical Systems, 287 (1987), 3-9. Zbl0653.58027MR92f:58119
  11. [7 bis] A. CHENCINER, A. GASULL, et J. LLIBRE, Une description complète du portrait de phase d'un modèle d'élimination résonnante, C.R.A.S., Série I, 305 (1987), 623-626. Zbl0647.34042MR88k:58106
  12. [8] F. DUMORTIER, P. R. RODRIGUEZ, R. ROUSSARIE, Germs of diffeomorphisms in the plane, Springer L. N., 902, 1981. Zbl0502.58001MR83f:58008
  13. [8 bis] K. HOCKETT, P. HOLMES, Josephon's junction, annulus maps, Birkhoff attractors, Horseshoes and rotation sets, Ergodic theory and dynamical systems, 6 (1986), 205-239. Zbl0582.58020MR88m:58103
  14. [9] G. IOOSS, Bifurcation of maps and applications, North Holland, 1979. Zbl0408.58019MR81b:58014
  15. [10] J. R. JOHNSON, Some properties of a z-parameter family of diffeomorphisms of the plane near a transcritical Hopf bifurcation, Thesis, University of Minnesota, July 1985. 
  16. [10 bis] P. LECALVEZ, Existence d'orbites quasi-périodiques dans les attracteurs de Birkhoff, Commun. Math. Phys., 106 (1986), 383-394. Zbl0602.58031MR88a:58124
  17. [11] Hans J. A. METZ, HANS LAUWERIER, The dynamical behaviour of some parasitoïd-host model : k-cycles and a transcritical Hopf bifurcation in a planar difference equation, Preprint, juin 1984. 
  18. [12] J. MOSER, Non existence of integrals for canonical systems of differential equations, C.P.A.M., 8 (1955), 409-436. Zbl0068.29402MR18,41c
  19. [13] J. MOSER, Proof of a generalized form of a fixed point theorem due to G. D. Birkhoff, in Geometry and Topology, Rio de Janeiro, 1976. Springer L.N., 597 (1977), 464-494. Zbl0358.58009MR58 #13205
  20. [14] J. MOSER, Lectures on Hamiltonian systems, Memoirs of the A.M.S., 81 (1968), 1-60. Zbl0172.11401MR37 #6060
  21. [15] E. ZEHNDER, Homoclinic points near elliptic fixed points, C.P.A.M., 26 (1973), 131-182. Zbl0261.58002MR49 #9873

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.