Action-angle coordinates at singularities for analytic integrable systems.
Here we present basic ideas and algorithms of Power Geometry and give a survey of some of its applications. In Section 2, we consider one generic ordinary differential equation and demonstrate how to find asymptotic forms and asymptotic expansions of its solutions. In Section 3, we demonstrate how to find expansions of solutions to Painlevé equations by this method, and we analyze singularities of plane oscillations of a satellite on an elliptic orbit. In Section 4, we consider the problem of local...
We give sufficient conditions for a diffeomorphism in the plane to be analytically conjugate to a shift in a complex neighborhood of a segment of an invariant curve. For a family of functions close to the identity uniform estimates are established. As a consequence an exponential upper estimate for splitting of separatrices is established for diffeomorphisms of the plane close to the identity. The constant in the exponent is related to the width of the analyticity domain of the limit flow separatrix....
We present a new method to compute normal forms, applied to the germs of reversible mappings. We translate the classification problem of these germs to the theory of ideals in the space of the coefficients of their jets. Integral factorization coupled with Gröbner basis constructionjs the key factor that makes the process efficient. We also show that a language with typed objects like AXIOM is very convenient to solve these kinds of problems.
The aim of this paper is to study the steady states of the mathematical models with delay kernels which describe pathogen-immune dynamics of infectious diseases. In the study of mathematical models of infectious diseases it is important to predict whether the infection disappears or the pathogens persist. The delay kernel is described by the memory function that reflects the influence of the past density of pathogen in the blood and it is given by a nonnegative bounded and normated function k defined...
We study the normalization of analytic vector fields with a nilpotent linear part. We prove that such an analytic vector field can be transformed into a certain form by convergent transformations when it has a non-singular formal integral. We then prove that there are smoothly linearizable parabolic analytic transformations which cannot be embedded into the flows of any analytic vector fields with a nilpotent linear part.
We classify four families of Levi-flat sets which are defined by quadratic polynomials and invariant under certain linear holomorphic symplectic maps. The normalization of Levi- flat real analytic sets is studied through the technique of Segre varieties. The main purpose of this paper is to apply the Levi-flat sets to the study of convergence of Birkhoff's normalization for holomorphic symplectic maps. We also establish some relationships between Levi-flat invariant sets...