R-equivalence and rationality problem for semisimple adjoint classical algebraic groups

Alexander S. Merkurjev

Publications Mathématiques de l'IHÉS (1996)

  • Volume: 84, page 189-213
  • ISSN: 0073-8301

How to cite

top

Merkurjev, Alexander S.. "R-equivalence and rationality problem for semisimple adjoint classical algebraic groups." Publications Mathématiques de l'IHÉS 84 (1996): 189-213. <http://eudml.org/doc/104115>.

@article{Merkurjev1996,
author = {Merkurjev, Alexander S.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {adjoint semisimple algebraic groups; -equivalences; rational varieties; rational points; birational invariants; non-rational adjoint groups},
language = {eng},
pages = {189-213},
publisher = {Institut des Hautes Études Scientifiques},
title = {R-equivalence and rationality problem for semisimple adjoint classical algebraic groups},
url = {http://eudml.org/doc/104115},
volume = {84},
year = {1996},
}

TY - JOUR
AU - Merkurjev, Alexander S.
TI - R-equivalence and rationality problem for semisimple adjoint classical algebraic groups
JO - Publications Mathématiques de l'IHÉS
PY - 1996
PB - Institut des Hautes Études Scientifiques
VL - 84
SP - 189
EP - 213
LA - eng
KW - adjoint semisimple algebraic groups; -equivalences; rational varieties; rational points; birational invariants; non-rational adjoint groups
UR - http://eudml.org/doc/104115
ER -

References

top
  1. [1] A. A. ALBERT, Tensor products of quaternion algebras, Proc. Amer. Math. Soc., 35 (1972), 65-66. Zbl0263.16012MR45 #6855
  2. [2] H. P. ALLEN, Hermitian forms II, J. Algebra, 10 (1968), 503-515. Zbl0302.15031MR39 #237
  3. [3] J. ARASON, Cohomologische Invarianten quadratischer Formen, J. Algebra, 36 (1975), 448-491. Zbl0314.12104MR52 #10592
  4. [4] E. BAYER, D. B. SHAPIRO, J.-P. TIGNOL, Hyperbolic Involutions, Math. Z., 214 (1993), 461-476. Zbl0796.16029MR94j:16060
  5. [5] A. BOREL, T. A. SPRINGER, Rationality properties of linear algebraic groups II, Tôhoku Math. J., 20 (1968), 443-497. Zbl0211.53302MR39 #5576
  6. [6] V. I. Černousov, The group of multipliers of the canonical quadratic form and stable rationality of the variety PSO (in Russian), Matematicheskie zametki, 55 (1994), 114-119. Zbl0855.11019
  7. [7] C. Chevalley, On algebraic group varieties, J. Math. Soc. Jap., 6 (1954), 303-324. Zbl0057.26301MR16,672g
  8. [8] J.-L. COLLIOT-THÉLÈNE, J.-J. SANSUC, La R-équivalence sur les tores, Ann. scient. Éc. Norm. Sup., 4e série, 10 (1977), 175-230. Zbl0356.14007MR56 #8576
  9. [9] M. DEMAZURE, A. GROTHENDIECK, Schémas et Groupes III (SGA 3, t. III), Lecture Notes in Math., No. 153, Springer, Heidelberg, 1970. Zbl0212.52810
  10. [10] J. DIEUDONNÉ, Sur les multiplicateurs des similitudes, Rend. Circ. Mat. di Palermo, 3 (1954), 398-408. Zbl0057.25201MR17,236b
  11. [11] R. ELMAN, T.-Y. LAM, Quadratic forms under algebraic extensions, Math. Ann., 219 (1976), 21-42. Zbl0302.10025MR53 #5476
  12. [12] P. GILLE, R-équivalence et principe de norme et cohomologie galoisienne, C. R. Acad. Sci. Paris, 316 (1993), 315-320. Zbl0826.12003MR94a:12010
  13. [13] N. JACOBSON, Clifford algebras for algebras with involution of type D, J. Algebra, 1 (1964), 288-300. Zbl0135.07401MR29 #5849
  14. [14] M.-A. KNUS, Quadratic and Hermitian Forms over Rings, Grundlehren math. Wiss., 294, Berlin, Springer-Verlag, 1991. Zbl0756.11008MR92i:11039
  15. [15] M.-A. KNUS, A. S. MERKURJEV, M. ROST, J.-P. TIGNOL, Book of involutions, in preparation. 
  16. [16] M.-A. KNUS, R. PARIMALA, R. SRIDHARAN, Involutions on rank 16 central simple algebras, J. Indian Math. Soc., 57 (1991), 143-151. Zbl0824.16017MR93c:16020
  17. [17] M.-A. KNUS, R. PARIMALA, R. SRIDHARAN, On the discriminant of an involution, Bull. Soc. Math. Belgique, Sér. A, 43 (1991), 89-98. Zbl0757.12002MR95m:16009
  18. [18] T.-Y. LAM, The Algebraic Theory of Quadratic Forms, Benjamin, Reading, Massachusetts, 1973. Zbl0259.10019MR53 #277
  19. [19] D. LEWIS, J.-P. TIGNOL, Square class groups and Witt rings of central simple algebras, J. Algebra, 154 (1993), 360-376. Zbl0766.11024MR94a:19007
  20. [20] Yu. I. MANIN, Cubic forms, Amsterdam, North-Holland, 1974. 
  21. [21] A. S. MERKURJEV, Simple algebras and quadratic forms, Math. USSR Izvestia, 38 (1992), 215-221. Zbl0763.12003MR93b:16025
  22. [22] A. S. MERKURJEV, Generic element in SK1 for simple algebras, K-theory, 7 (1993), 1-3. Zbl0811.16011MR94g:19001
  23. [23] A. S. MERKURJEV, Involutions and algebraic groups, Preprint. Recherches de mathématique, No. 36, Université catholique de Louvain, Louvain-la-Neuve, Belgium (1993). 
  24. [24] A. S. MERKURJEV, I. A. PANIN, A. WADSWORTH, Index reduction formulas for twisted flag varieties, I, K-theory, 10 (1996), 517-596. Zbl0874.16012MR98c:16018
  25. [25] A. S. MERKURJEV, A. A. SUSLIN, K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Math. USSR Izvestiya, 21 (1983), 307-340. Zbl0525.18008
  26. [26] A. S. MERKURJEV, J.-P. TIGNOL, The multipliers of similitudes and the Brauer group of homogeneous varieties, J. reine angew. Math., 461 (1995), 13-47. Zbl0819.16015MR96c:20083
  27. [27] V. P. PLATONOV, Algebraic groups and reduced K-theory, Proc. Inter. Congr. Math., V.1. Helsinki, 1978, p. 311-317. Zbl0425.16018MR81h:12017
  28. [28] V. P. PLATONOV, On the problem of rationality of spinor varieties, Soviet Math. Dokl., 20 (1979), 1027-1031. Zbl0435.20028MR81a:14027
  29. [29] V. P. PLATONOV, V. I. ČHERNOUSOV, On the rationality of canonical spinor varieties, Soviet Math. Dokl., 21 (1980), 830-834. Zbl0486.14013MR81k:14019
  30. [30] J.-J. SANSUC, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. reine angew. Math., 327 (1981), 12-80. Zbl0468.14007MR83d:12010
  31. [31] W. SCHARLAU, Quadratic and Hermitian Forms, Grundlehren math. Wiss., 270, Berlin, Springer-Verlag, 1985. Zbl0584.10010MR86k:11022
  32. [32] A. SCHOFIELD, M. VAN DEN BERGH, The index of a Brauer class on a Brauer-Severi variety, Trans. Amer. Math. Soc., 333 (1992), 729-739. Zbl0778.12004MR92m:12003
  33. [33] D. TAO, The generalized even Clifford algebra, J. Algebra, 172 (1995), 184-204. Zbl0837.16032MR96e:15051
  34. [34] J.-P. TIGNOL, Algèbres indécomposables d'exposant premier, Advances in Math., 65 (1987), 205-228. Zbl0642.16015MR88h:16028
  35. [35] J.-P. TIGNOL, A Cassels-Pfister theorem for involutions on central simple algebras, J. Algebra, 181 (1996), 857-875. Zbl0847.16019MR97e:16043
  36. [36] J. TITS, Formes quadratiques, groupes orthogonaux et algèbres de Clifford, Invent. Math., 5 (1968), 19-41. Zbl0155.05202MR37 #6307
  37. [37] J. TITS, Classification of algebraic semisimple groups, in Algebraic Groups and Discontinuous Subgroups (A. BOREL and G. D. MOSTOV, eds), Proc. Symp. Pure Math., IX, Providence, Amer. Math. Soc., 1966, p. 32-62. Zbl0238.20052MR37 #309
  38. [38] V. E. VOSKRESENSKIĬ, Algebraic tori, Nauka, Moscow, 1977, p. 223 (Russian). Zbl0499.14013
  39. [39] V. E. VOSKRESENSKIĬ, A. A. KLYACHKO, Toroidal Fano varieties and root system, Math. USSR Izvestija, 24 (1985), 221-244. Zbl0572.14029
  40. [40] A. WEIL, Algebras with involutions and the classical groups, J. Indian Math. Soc., 24 (1960), 589-623. Zbl0109.02101MR25 #147
  41. [41] A. WEIL, Adèles and algebraic groups, Inst. for Adv. Study, Princeton, 1964. 
  42. [42] V. I. YANCHEVSKIĬ, Reduced norms of simple algebras over function fields, Proc. Steklov Inst. Math., 183 (1991), 261-269. Zbl0736.16010MR92a:11143

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.