Morphisms, line bundles and moduli spaces in real algebraic geometry

J. Bochnak; W. Kucharz; R. Silhol

Publications Mathématiques de l'IHÉS (1997)

  • Volume: 86, page 5-65
  • ISSN: 0073-8301

How to cite

top

Bochnak, J., Kucharz, W., and Silhol, R.. "Morphisms, line bundles and moduli spaces in real algebraic geometry." Publications Mathématiques de l'IHÉS 86 (1997): 5-65. <http://eudml.org/doc/104125>.

@article{Bochnak1997,
author = {Bochnak, J., Kucharz, W., Silhol, R.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {line bundles; real algebraic varieties; Picard group; homotopy classes; abelian variety; connectedness; period matrix},
language = {eng},
pages = {5-65},
publisher = {Institut des Hautes Études Scientifiques},
title = {Morphisms, line bundles and moduli spaces in real algebraic geometry},
url = {http://eudml.org/doc/104125},
volume = {86},
year = {1997},
}

TY - JOUR
AU - Bochnak, J.
AU - Kucharz, W.
AU - Silhol, R.
TI - Morphisms, line bundles and moduli spaces in real algebraic geometry
JO - Publications Mathématiques de l'IHÉS
PY - 1997
PB - Institut des Hautes Études Scientifiques
VL - 86
SP - 5
EP - 65
LA - eng
KW - line bundles; real algebraic varieties; Picard group; homotopy classes; abelian variety; connectedness; period matrix
UR - http://eudml.org/doc/104125
ER -

References

top
  1. [1] J. BOCHNAK, M. COSTE and M.-F. ROY, Géométrie Algébrique Réelle, Ergeb. Math., vol. 12, Springer-Verlag, 1987. Zbl0633.14016MR90b:14030
  2. [2] J. BOCHNAK and W. KUCHARZ, Algebraic approximation of mappings into spheres, Michigan Math. J., 34 (1987), 119-125. Zbl0631.14019MR88h:58018
  3. [3] J. BOCHNAK and W. KUCHARZ, Representation of homotopy classes by algebraic mappings, J. Reine Angew. Math. 377 (1987), 159-169. Zbl0619.14014MR88g:14016
  4. [4] J. BOCHNAK and W. KUCHARZ, On real algebraic morphisms into even-dimensional spheres, Ann. of Math. 128 (1988), 415-433. Zbl0674.14013MR89k:57060
  5. [5] J. BOCHNAK and W. KUCHARZ, Algebraic models of smooth manifolds, Invent. Math. 97 (1989), 585-611. Zbl0687.14023MR91b:14076
  6. [6] J. BOCHNAK and W. KUCHARZ, Nonisomorphic algebraic models of a smooth manifold, Math. Ann. 290 (1991), 1-2. Zbl0714.14012MR92c:14053
  7. [7] J. BOCHNAK and W. KUCHARZ, Vector bundles on a product of real cubic curves, K-Theory (1992) 487-497. Zbl0782.14014MR94e:14077
  8. [8] J. BOCHNAK and W. KUCHARZ, Complex cycles on real algebraic models of a smooth manifold, Proc. Amer. Math. Soc. 114 (1992), 1097-1104. Zbl0760.57011MR93g:57032
  9. [9] J. BOCHNAK and W. KUCHARZ, Elliptic curves and real algebraic morphisms, J. Algebraic Geometry 2 (1993), 635-666. Zbl0807.14046MR94e:14072
  10. [10] J. BOCHNAK, M. BUCHNER and W. KUCHARZ, Vector bundles over real algebraic varieties, K-Theory 3 (1989), 271-298. Erratum, K-Theory 4 (1990), p. 103. Zbl0761.14020MR91b:14075
  11. [11] P. DELIGNE, Le théorème de Noether, in : SGA 7II, p. 328-340, Lecture Notes in Math. 340, Springer, 1973. Zbl0269.14019MR50 #7135
  12. [12] A. DOLD, Lectures on Algebraic Topology, Springer-Verlag, 1972. Zbl0234.55001MR54 #3685
  13. [13] T. EKEDAHL et J.-P. SERRE, Exemples de courbes algébriques à Jacobienne complètement décomposable, C.R. Acad. Sci. Paris 317, Série I (1993), 509-513. Zbl0789.14026MR94j:14029
  14. [14] B. H. GROSS and J. HARRIS, Real algebraic curves, Ann. Scient. Éc. Norm. Sup. 14 (1981), 157-182. Zbl0533.14011MR83a:14028
  15. [15] H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79 (1964), 109-326. Zbl0122.38603MR33 #7333
  16. [16] M. HIRSCH, Differential Topology, New York and Berlin, Springer, 1976. Zbl0356.57001MR56 #6669
  17. [17] S. T. HU, Homotopy Theory, New York, Academic Press, 1959. Zbl0088.38803MR21 #5186
  18. [18] S. LANG, Abelian Varieties, Interscience, New York, 1959. Zbl0098.13201MR21 #4959
  19. [19] H. LANGE, Produkte elliptischer Kurven, Nachr. Akad. Wiss. Göttingen 8 (1975), 95-108. Zbl0317.14022MR58 #22088
  20. [20] H. LANGE and Ch. BIRKENHAKE, Complex Abelian Varieties, Grundlehren der Math. Wissenschaften, vol. 302, Springer-Verlag, 1992. Zbl0779.14012MR94j:14001
  21. [21] J.-L. LODAY, Applications algébriques du tore dans la sphère et du Sp X Sq dans Sp + q, Algebraic K-Theory II, Lecture Notes in Math., vol. 342, 79-91, Springer-Verlag, 1973, p. 79-91. Zbl0269.57001MR51 #4276
  22. [22] J. S. MILNE, Jacobian varieties, in Arithmetic Geometry, edited by G. Cornell and J. H. Silverman, Springer-Verlag, 1986, p. 167-212. Zbl0604.14018MR861976
  23. [23] Y. NAMIKAWA, Toroidal Compactification of Siegel Spaces, Lecture Notes in Math. vol. 812, Springer-Verlag, 1980. Zbl0466.14011MR82a:32034
  24. [24] S. M. NATANZON, Moduli spaces of real curves, Trans. Moscow Math. Soc. Issue 1 (1980), 233-272. Zbl0452.14006
  25. [25] M. SEPPÄLÄ, Moduli space of stable real algebraic curves, Ann. Scient. Éc. Norm. Sup. 24 (1991), 519-544. Zbl0757.32011MR93b:14047
  26. [26] M. SEPPÄLÄ and R. SILHOL, Moduli spaces for real algebraic curves and real abelian varieties, Math. Zeitschrift 201 (1989), 151-165. Zbl0645.14012MR90k:14043
  27. [27] J.-P. SERRE, Faisceaux algébriques cohérents, Ann. of Math. 61 (1955), 197-278. Zbl0067.16201MR16,953c
  28. [28] I. R. SHAFAREVICH, Basic Algebraic Geometry, Springer-Verlag, 1977. Zbl0362.14001MR56 #5538
  29. [29] R. SILHOL, Real Algebraic Surfaces, Lecture Notes in Math. vol. 1392, Springer-Verlag, 1989. Zbl0691.14010MR91i:14045
  30. [30] R. SILHOL, Compactifications of moduli spaces in real algebraic geometry, Invent. Math. 107 (1992), 151-201. Zbl0777.14014MR93i:14018
  31. [31] R. G. SWAN, Vector bundles and projective modules, Trans. Amer. Math. Soc. 105 (1962), 264-277. Zbl0109.41601MR26 #785
  32. [32] R. G. SWAN, Topological examples of projective modules, Trans. Amer. Math. Soc. 230 (1977), 201-234. Zbl0443.13005MR56 #6657

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.