Moduli spaces of stable real algebraic curves

M. Seppälä

Annales scientifiques de l'École Normale Supérieure (1991)

  • Volume: 24, Issue: 5, page 519-544
  • ISSN: 0012-9593

How to cite


Seppälä, M.. "Moduli spaces of stable real algebraic curves." Annales scientifiques de l'École Normale Supérieure 24.5 (1991): 519-544. <>.

author = {Seppälä, M.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {moduli space; stable Riemann surface; stable real algebraic curve},
language = {eng},
number = {5},
pages = {519-544},
publisher = {Elsevier},
title = {Moduli spaces of stable real algebraic curves},
url = {},
volume = {24},
year = {1991},

AU - Seppälä, M.
TI - Moduli spaces of stable real algebraic curves
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1991
PB - Elsevier
VL - 24
IS - 5
SP - 519
EP - 544
LA - eng
KW - moduli space; stable Riemann surface; stable real algebraic curve
UR -
ER -


  1. [1] W. ABIKOFF, The Real Analytic Theory of Teichmüller Space (Lect. Notes Math., No. 820, Springer-Verlag, Berlin-Heidelberg-New York, 1980). Zbl0452.32015MR82a:32028
  2. [2] L. ALLING and N. GREENLEAF, Foundations of the Theory of Klein Surfaces (Lect. Notes Math., No. 219, Springer-Verlag, Berlin-Heidelberg-New York, 1971). Zbl0225.30001MR48 #11488
  3. [3] L. BERS, Finite Dimensional Teichmüller Spaces and Generalizations [Bull. Am. Math. Soc., Vol. 5, (2), September 1981, pp. 131-172]. Zbl0485.30002MR82k:32050
  4. [4] L. BERS, An Inequality for Riemann Surfaces. In I. CHAVEL and H. FARKAS Eds., Differential Geometry and Complex Analysis, pp. 87-93, Springer-Verlag, Berlin-Heidelberg-New York, 1985. Zbl0575.30039MR86h:30076
  5. [5] A. FATHI and F. LAUDENBACH Eds., Travaux de Thurston sur les surfaces, (Astérisque, Vol. 66-67, Soc. Math. France, Paris, 1979). MR82m:57003
  6. [6] J. FAY, Theta Functions on Riemann Surfaces (Lect. Notes Math., No. 352, Springer-Verlag, Berlin-Heidelberg-New York, 1973). Zbl0281.30013MR49 #569
  7. [7] N. HALPERN, Some Contributions to the Theory of Riemann Surfaces (Thesis, Columbia University, 1978). 
  8. [8] L. KEEN, Collars on Riemann Surfaces. In Discontinuous Groups and Riemann Surfaces (Ann. Math. Studies, Vol. 79, pp. 263-268, Princeton University Press, 1974). Zbl0304.30014MR52 #738
  9. [9] F. KLEIN, Über eine neue Art von Riemannschen Flächen (Math. Ann., Vol. 10, 1876). JFM08.0439.02
  10. [10] F. KLEIN, Über Realitätsverältnisse bei der einem beliebigen Geschlechte zugehörigen Normalkurve der φ (Math. Ann., Vol. 42, 1892). JFM25.0689.03
  11. [11] M. SEPPÄLÄ, On Moduli of Real Curves. In J.-J. RISLER Ed., Séminaire sur la Géométrie Algébrique Réelle, pp. 85-95, Paris-VII, 1986, Publications Mathématiques de l'Université, Paris-VII. Zbl0655.14011MR89g:32033
  12. [12] M. SEPPÄLÄ, Real Algebraic Curves in the Moduli Spaces of complex Curves (Compositio Mathematica, Vol. 74, 1990, pp. 259-283). Zbl0725.14019MR91j:14020
  13. [13] M. SEPPÄLÄ and R. SILHOL, Moduli Spaces for Real Algebraic Curves and Real Abelian Varieties (Math. Z., Vol. 201, 1989, pp. 151-165). Zbl0645.14012MR90k:14043
  14. [14] M. SEPPÄLÄ and T. SORVALI, Parametrization of Teichmüller Spaces by Geodesic Length Functions. In D. DRASIN, C. J. EARL, F. W. GEHRING, I. KRA and A. MARDEN Eds, Holomorphic Functions and Moduli II, (Publications of the Mathematical Sciences Research Institute Berkeley, Vol. 11, pp. 267-283, Springer-Verlag, New York-Berlin-Heidelberg-London-Paris-Tokyo, 1988). Zbl0664.30039
  15. [15] G. WEICHHOLD, Über symmetrische Riemannsche Flächen und die Periodizitätsmodulen der zugerhörigen Abelschen Normalintegrale erstes Gattung (Leipziger Dissertation, 1883). JFM15.0434.01

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.