Counting p -groups and nilpotent groups

Marcus Du Sautoy

Publications Mathématiques de l'IHÉS (2000)

  • Volume: 92, page 63-112
  • ISSN: 0073-8301

How to cite

top

Du Sautoy, Marcus. "Counting $p$-groups and nilpotent groups." Publications Mathématiques de l'IHÉS 92 (2000): 63-112. <http://eudml.org/doc/104172>.

@article{DuSautoy2000,
author = {Du Sautoy, Marcus},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {finite -groups; zeta functions; PORC conjecture; numbers of points on varieties mod ; definable -adic integrals},
language = {eng},
pages = {63-112},
publisher = {Institut des Hautes Études Scientifiques},
title = {Counting $p$-groups and nilpotent groups},
url = {http://eudml.org/doc/104172},
volume = {92},
year = {2000},
}

TY - JOUR
AU - Du Sautoy, Marcus
TI - Counting $p$-groups and nilpotent groups
JO - Publications Mathématiques de l'IHÉS
PY - 2000
PB - Institut des Hautes Études Scientifiques
VL - 92
SP - 63
EP - 112
LA - eng
KW - finite -groups; zeta functions; PORC conjecture; numbers of points on varieties mod ; definable -adic integrals
UR - http://eudml.org/doc/104172
ER -

References

top
  1. [1] N. BLACKBURN, On a special class of p-groups, Acta Math. 100 (1958), 49-92. Zbl0083.24802MR21 #1349
  2. [2] R. M. BRYANT and J. R. J. GROVES, Algebraic groups of automorphisms of nilpotent groups and Lie algebras, J. London Math. Soc. 33 (1986), 453-466. Zbl0554.20008MR87j:20082
  3. [3] J. DENEF, The rationality of the Poincaré series associated to the p-adic points on a variety, Invent. Math. 77 (1984), 1-23. Zbl0537.12011MR86c:11043
  4. [4] J. DENEF and L. van den DRIES, p-adic and real subanalytic sets, Annals of Math. 128 (1988), 79-138. Zbl0693.14012MR89k:03034
  5. [5] J. DENEF and F. LOESER, Motivic Igusa zeta functions, J. Algebraic Geom., 7 (1998), 505-537. Zbl0943.14010MR99j:14021
  6. [6] J. DENEF and F. LOESER, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., 135 (1999), 201-232. Zbl0928.14004MR99k:14002
  7. [7] J. D. DIXON, M. P. F. du SAUTOY, A. MANN and D. SEGAL, Analytic pro-p groups, Second Edition, Cambridge Studies in Advanced Mathematics, 61, Cambridge, CUP, 1999. Zbl0934.20001MR2000m:20039
  8. [8] M. P. F. du SAUTOY, Finitely generated groups, p-adic analytic groups and Poincaré series, Annals of Math. 137 (1993), 639-670. Zbl0790.20044MR94j:20029
  9. [9] M. P. F. du SAUTOY, Zeta functions and counting finite p-groups, Electronic Research Announcements of the American Math. Soc., 5 (1999), 112-122. Zbl1045.20503MR2000k:11102
  10. [10] M. P. F. du SAUTOY, A nilpotent group and its elliptic curve : non-uniformity of local zeta functions of groups, MPI preprint 2000-2085. To appear in Israel J. of Math. 126. Zbl0998.20033
  11. [11] M. P. F. du SAUTOY, Counting subgroups in nilpotent groups and points on elliptic curves, MPI preprint 2000-2086. Zbl1001.20032
  12. [12] M. P. F. du SAUTOY, Natural boundaries for zeta functions of groups, preprint. 
  13. [13] M. P. F. du SAUTOY and F. J. GRUNEWALD, Analytic properties of Euler products of Igusa-type zeta functions and subgroup growth of nilpotent groups, C. R. Acad. Sci. Paris 329, Série 1 (1999), 351-356. Zbl1062.11503MR2000g:11110
  14. [14] M. P. F. du SAUTOY and F. J. GRUNEWALD, Analytic properties of zeta functions and subgroup growth, Annals of Math. 152 (2000), 793-833. Zbl1006.11051MR2002h:11084
  15. [15] M. P. F. du SAUTOY and F. J. GRUNEWALD, Uniformity for 2-generator free nilpotent groups, in preparation. Zbl1062.11503
  16. [16] M. P. F. du SAUTOY and F. LOESER, Motivic zeta functions of infinite dimensional Lie algebras, École polytechnique, preprint series 2000-2012. Zbl1062.14029
  17. [17] M. P. F. du SAUTOY and A. LUBOTZKY, Functional equations and uniformity for local zeta functions of nilpotent groups, Amer. J. Math. 118 (1996), 39-90. Zbl0864.20020MR97g:11137
  18. [18] M. P. F. du SAUTOY, J. J. MCDERMOTT and G. C. SMITH, Zeta functions of crystallographic groups and analytic continuation, Proc. London Math. Soc. 79 (1999), 511-534. Zbl1039.11056MR2000k:11103
  19. [19] M. P. F. du SAUTOY and D. SEGAL, Zeta functions of groups, in New horizons in pro-p groups. Progress in Mathematics, vol. 184 (ed M. P. F. du Sautoy, D. Segal and A. Shalev), p. 249-286. Boston, Birkhäuser (2000). Zbl1188.11047MR2001h:11123
  20. [20] M. D. FRIED and M. JARDEN, Field Arithmetic, Springer-Verlag, Berlin, Heidelberg, New York, 1986. Zbl0625.12001MR89b:12010
  21. [21] F. J. GRUNEWALD, D. SEGAL and G. C. SMITH, Subgroups of finite index in nilpotent groups, Invent. Math. 93 (1988), 185-223. Zbl0651.20040MR89m:11084
  22. [22] G. HIGMAN, Enumerating p-groups, I, Proc. London Math. Soc. 10 (1960), 24-30. Zbl0093.02603MR22 #4779
  23. [23] G. HIGMAN, Enumerating p-groups, II, Proc. London Math. Soc. 10 (1960), 566-582. Zbl0201.36502MR23 #A930
  24. [24] K. IRELAND and M. ROSEN, A classical introduction to modern number theory, Second Edition, Graduate texts in mathematics 84, Springer-Verlag, New York, Berlin, Heidelberg, 1993. 
  25. [25] S. LANG, Algebra, Addison-Wesley, Reading, MA, 1965. Zbl0193.34701MR33 #5416
  26. [26] C. R. LEEDHAM-GREEN and S. MCKAY, On p-groups of maximal class II, Quart. J. Math. Oxford (2) 29 (1978), 175-186. Zbl0383.20016MR58 #22281b
  27. [27] C. R. LEEDHAM-GREEN and S. MCKAY, On p-groups of maximal class III, Quart. J. Math. Oxford (2) 29 (1978), 281-299. Zbl0403.20013MR58 #22281c
  28. [28] C. R. LEEDHAM-GREEN and M. F. NEWMAN, Space groups and groups of prime-power order I, Arch. Math. (Basel) 35 (1980), 193-202. Zbl0437.20016MR81m:20029
  29. [29] C. R. LEEDHAM-GREEN, The structure of finite p-groups, J. London Math. Soc. 50 (1994), 49-67. Zbl0822.20018MR95j:20022a
  30. [30] W. MAGNUS, A. KARRAS and D. SOLITAR, Combinatorial Group Theory, Wiley, Chichester, UK, 1966. 
  31. [31] M. F. NEWMAN, Groups of prime-power order, Groups-Canberra 1989, Lecture Notes in Math., 1456 Springer-Verlag (1990), 49-62. Zbl0726.20011MR91m:20031
  32. [32] M. F. NEWMAN and E. A. O'BRIEN, Classifying 2-groups by coclass, Trans. Amer. Math. Soc. 351 (1999), 131-169. Zbl0914.20020MR99c:20020
  33. [33] V. P. PLATONOV, The problem of strong approximation and the Kneser-Tits conjecture for algebraic groups, Math. USSR-Izv. 3 (1969), 1139-1147. Zbl0217.36301
  34. [34] V. P. PLATONOV, Addendum, Math. USSR-Izv. 4 (1970), 784-786. Zbl0236.20034
  35. [35] V. P. PLATONOV and A. S. RAPINCHUK, Algebraic Groups and Number Theory, Pure and Applied Mathematics 139, London, Academic Press, 1994. Zbl0841.20046MR95b:11039
  36. [36] D. SEGAL, Polycyclic Groups, Cambridge tracts in mathematics, 82, CUP (1983). Zbl0516.20001MR85h:20003
  37. [37] A. SHALEV, The structure of finite p-groups : effective proof of the coclass conjectures, Invent. Math. 115 (1994), 315-345. Zbl0795.20009MR95j:20022b
  38. [38] C. C. SIMS, Enumerating p-groups, Proc. London Math. Soc. 15 (1965), 151-166. Zbl0133.28401MR30 #164
  39. [39] R. P. STANLEY, Enumerative Combinatorics, vol. 1, Cambridge Studies in Advanced Mathematics, 49, CUP, 1997. Zbl0889.05001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.