The distribution of second p -class groups on coclass graphs

Daniel C. Mayer[1]

  • [1] Naglergasse 53 8010 Graz Austria

Journal de Théorie des Nombres de Bordeaux (2013)

  • Volume: 25, Issue: 2, page 401-456
  • ISSN: 1246-7405

Abstract

top
General concepts and strategies are developed for identifying the isomorphism type of the second p -class group G = Gal ( F p 2 ( K ) | K ) , that is the Galois group of the second Hilbert p -class field F p 2 ( K ) , of a number field K , for a prime p . The isomorphism type determines the position of G on one of the coclass graphs 𝒢 ( p , r ) , r 0 , in the sense of Eick, Leedham-Green, and Newman. It is shown that, for special types of the base field K and of its p -class group Cl p ( K ) , the position of G is restricted to certain admissible branches of coclass trees by selection rules. Deeper insight, in particular, the density of population of individual vertices on coclass graphs, is gained by computing the actual distribution of second p -class groups G for various series of number fields K having p -class groups Cl p ( K ) of fixed type and p { 2 , 3 , 5 , 7 } .

How to cite

top

Mayer, Daniel C.. "The distribution of second $p$-class groups on coclass graphs." Journal de Théorie des Nombres de Bordeaux 25.2 (2013): 401-456. <http://eudml.org/doc/275771>.

@article{Mayer2013,
abstract = {General concepts and strategies are developed for identifying the isomorphism type of the second $p$-class group $G=\mathrm\{Gal\}(\mathrm\{F\}_p^2(K)\vert K)$, that is the Galois group of the second Hilbert $p$-class field $\mathrm\{F\}_p^2(K)$, of a number field $K$, for a prime $p$. The isomorphism type determines the position of $G$ on one of the coclass graphs $\mathcal\{G\}(p,r)$, $r\ge 0$, in the sense of Eick, Leedham-Green, and Newman. It is shown that, for special types of the base field $K$ and of its $p$-class group $\mathrm\{Cl\}_p(K)$, the position of $G$ is restricted to certain admissible branches of coclass trees by selection rules. Deeper insight, in particular, the density of population of individual vertices on coclass graphs, is gained by computing the actual distribution of second $p$-class groups $G$ for various series of number fields $K$ having $p$-class groups $\mathrm\{Cl\}_p(K)$ of fixed type and $p\in \lbrace 2,3,5,7\rbrace $.},
affiliation = {Naglergasse 53 8010 Graz Austria},
author = {Mayer, Daniel C.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {$p$-class groups; $p$-class field tower; principalization of $p$-classes; quadratic fields; cubic fields; dihedral fields; metabelian $p$-groups; coclass graphs; -class group; -class field tower; principalization of -classes; quadratic field; cubic field; metabelian -group; coclass graph},
language = {eng},
month = {9},
number = {2},
pages = {401-456},
publisher = {Société Arithmétique de Bordeaux},
title = {The distribution of second $p$-class groups on coclass graphs},
url = {http://eudml.org/doc/275771},
volume = {25},
year = {2013},
}

TY - JOUR
AU - Mayer, Daniel C.
TI - The distribution of second $p$-class groups on coclass graphs
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/9//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 2
SP - 401
EP - 456
AB - General concepts and strategies are developed for identifying the isomorphism type of the second $p$-class group $G=\mathrm{Gal}(\mathrm{F}_p^2(K)\vert K)$, that is the Galois group of the second Hilbert $p$-class field $\mathrm{F}_p^2(K)$, of a number field $K$, for a prime $p$. The isomorphism type determines the position of $G$ on one of the coclass graphs $\mathcal{G}(p,r)$, $r\ge 0$, in the sense of Eick, Leedham-Green, and Newman. It is shown that, for special types of the base field $K$ and of its $p$-class group $\mathrm{Cl}_p(K)$, the position of $G$ is restricted to certain admissible branches of coclass trees by selection rules. Deeper insight, in particular, the density of population of individual vertices on coclass graphs, is gained by computing the actual distribution of second $p$-class groups $G$ for various series of number fields $K$ having $p$-class groups $\mathrm{Cl}_p(K)$ of fixed type and $p\in \lbrace 2,3,5,7\rbrace $.
LA - eng
KW - $p$-class groups; $p$-class field tower; principalization of $p$-classes; quadratic fields; cubic fields; dihedral fields; metabelian $p$-groups; coclass graphs; -class group; -class field tower; principalization of -classes; quadratic field; cubic field; metabelian -group; coclass graph
UR - http://eudml.org/doc/275771
ER -

References

top
  1. M. Arrigoni, On Schur σ -groups. Math. Nachr. 192 (1998), 71–89. Zbl0908.20028MR1626391
  2. E. Artin, Beweis des allgemeinen Reziprozitätsgesetzes. Abh. Math. Sem. Univ. Hamburg 5 (1927), 353–363. Zbl53.0144.04MR3069486
  3. E. Artin, Idealklassen in Oberkörpern und allgemeines Reziprozitätsgesetz. Abh. Math. Sem. Univ. Hamburg 7 (1929), 46–51. Zbl55.0699.01MR3069515
  4. J. A. Ascione, G. Havas, and C. R. Leedham-Green, A computer aided classification of certain groups of prime power order. Bull. Austral. Math. Soc. 17 (1977), 257–274, Corrigendum 317–319, Microfiche Supplement p. 320. Zbl0359.20018
  5. J. A. Ascione, On 3 -groups of second maximal class. Ph. D. Thesis, Australian National University, Canberra, 1979. 
  6. J. A. Ascione, On 3 -groups of second maximal class. Bull. Austral. Math. Soc. 21 (1980), 473–474. Zbl0417.20022
  7. A. Azizi et M. Taous, Determination des corps k = d , i dont le 2 -groupe de classes est de type ( 2 , 4 ) ou ( 2 , 2 , 2 ) . Rend. Istit. Mat. Univ. Trieste 40 (2008), 93–116. Zbl1215.11107MR2583453
  8. A. Azizi, A. Zekhnini et M. Taous, Capitulation dans le corps des genres de certain corps de nombres biquadratique imaginaire dont le 2 -groupe des classes est de type ( 2 , 2 , 2 ) . Prépublication, Journées de théorie des nombres, FSO, Oujda, Maroc, Septembre 2010. 
  9. A. Azizi, A. Zekhnini et M. Taous, Sur la capitulation des 2 -classes d’idéaux du corps 2 p 1 p 2 , i . Prépublication, Workshop International NTCCCS, FSO, Oujda, Maroc, Avril 2012. 
  10. G. Bagnera, La composizione dei gruppi finiti il cui grado è la quinta potenza di un numero primo. Ann. di Mat. (Ser. 3) 1 (1898), 137–228. 
  11. L. Bartholdi and M. R. Bush, Maximal unramified 3 -extensions of imaginary quadratic fields and SL 2 3 . J. Number Theory 124 (2007), 159–166. Zbl1166.11041MR2320997
  12. T. Bembom, The capitulation problem in class field theory. Dissertation, Georg-August-Universität Göttingen, 2012. Zbl1298.11104
  13. E. Benjamin, F. Lemmermeyer, C. Snyder, Imaginary quadratic fields with Cl 2 ( k ) ( 2 , 2 , 2 ) . J. Number Theory 103 (2003), 38–70. Zbl1045.11077MR2008065
  14. H. U. Besche, B. Eick, and E. A. O’Brien, The SmallGroups Library — a Library of Groups of Small Order. 2005, an accepted and refereed GAP 4 package, available also in MAGMA. 
  15. N. Blackburn, On a special class of p -groups. Acta Math. 100 (1958), 45–92. Zbl0083.24802MR102558
  16. N. Blackburn, On prime-power groups in which the derived group has two generators. Proc. Camb. Phil. Soc. 53 (1957), 19–27. Zbl0077.03202MR81904
  17. R. Bölling, On ranks of class groups of fields in dihedral extensions over with special reference to cubic fields. Math. Nachr. 135 (1988), 275–310. Zbl0674.12003MR944232
  18. W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), 235–265. Zbl0898.68039MR1484478
  19. W. Bosma, J. J. Cannon, C. Fieker, and A. Steels (eds.), Handbook of Magma functions. Edition 2.19, Sydney, 2012. 
  20. N. Boston, M. R. Bush and F. Hajir, Heuristics for p -class towers of imaginary quadratic fields. arXiv: 1111.4679 v1 [math.NT] 20 Nov 2011. 
  21. N. Boston, M. R. Bush and F. Hajir, Heuristics for p -class towers of real quadratic fields. In preparation. 
  22. N. Boston and J. Ellenberg, Random pro- p groups, braid groups, and random tame Galois groups. Groups Geom. Dyn. 5 (2011), 265–280. Zbl1239.11126MR2782173
  23. M. Boy, On the second class group of real quadratic number fields. Dissertation, Technische Universität Kaiserslautern, 2012. 
  24. J. R. Brink, The class field tower for imaginary quadratic number fields of type ( 3 , 3 ) . Dissertation, Ohio State University, 1984. 
  25. J. R. Brink and R. Gold, Class field towers of imaginary quadratic fields. manuscripta math. 57 (1987), 425–450. Zbl0611.12009MR878133
  26. M. R. Bush, Schur σ -groups of small prime power order. In preparation. 
  27. H. Dietrich, B. Eick, and D. Feichtenschlager, Investigating p -groups by coclass with GAP. Computational group theory and the theory of groups, 45–61, Contemp. Math. 470, AMS, Providence, RI, 2008. Zbl1167.20011MR2478413
  28. H. Dietrich, Periodic patterns in the graph of p -groups of maximal class. J. Group Theory 13 (2010) 851–871. Zbl1218.20011MR2736161
  29. H. Dietrich, A new pattern in the graph of p -groups of maximal class. Bull. London Math. Soc. 42 (2010) 1073–1088. Zbl1218.20010MR2740028
  30. M. du Sautoy, Counting p -groups and nilpotent groups. Inst. Hautes Études Sci. Publ. Math. 92 (2001) 63–112. Zbl1017.20012MR1839487
  31. T. E. Easterfield, A classification of groups of order p 6 . Ph. D. Thesis, Univ. of Cambridge, 1940. Zbl0024.01703
  32. B. Eick and D. Feichtenschlager, Infinite sequences of p -groups with fixed coclass. arXiv: 1006.0961 v1 [math.GR], 4 Jun 2010. Zbl1239.20020
  33. B. Eick and C. Leedham-Green, On the classification of prime-power groups by coclass. Bull. London Math. Soc. 40 (2) (2008), 274–288. Zbl1168.20007MR2414786
  34. B. Eick, C. R. Leedham-Green, M. F. Newman, and E. A. O’Brien, On the classification of groups of prime-power order by coclass: The 3 -groups of coclass 2 . Preprint, 2011. Zbl1298.20020
  35. D. Feichtenschlager, Symbolic computation with infinite sequences of p -groups with fixed coclass. Dissertation, TU Braunschweig, 2010. Zbl1305.20020
  36. C. Fieker, Computing class fields via the Artin map. Math. Comp. 70 (2001), no. 235, 1293–1303. Zbl0982.11074MR1826583
  37. G. Frei, P. Roquette, and F. Lemmermeyer, Emil Artin and Helmut Hasse. Their Correspondence 1923–1934. Universitätsverlag Göttingen, 2008. Zbl1294.01004MR2516557
  38. Ph. Furtwängler, Beweis des Hauptidealsatzes für die Klassenkörper algebraischer Zahlkörper. Abh. Math. Sem. Univ. Hamburg 7 (1929), 14–36. Zbl55.0699.02MR3069513
  39. G. Gamble, W. Nickel, and E. A. O’Brien, ANU p-Quotient — p-Quotient and p-Group Generation Algorithms, 2006, an accepted GAP 4 package, available also in MAGMA. 
  40. The GAP Group, GAP — Groups, Algorithms, and Programming — a System for Computational Discrete Algebra, Version 4.4.12. Aachen, Braunschweig, Fort Collins, St. Andrews, 2008, (http://www.gap-system.org). 
  41. F. Gerth III, Ranks of 3 -class groups of non-Galois cubic fields. Acta Arith. 30 (1976), 307–322. Zbl0297.12006MR422198
  42. G. Gras, Sur les -classes d’idéaux des extensions non galoisiennes de degré premier impair à la clôture galoisienne diédrale de degré 2 . J. Math. Soc. Japan 26 (1974), 677–685. Zbl0279.12004MR364179
  43. M. Hall and J. K. Senior, The groups of order 2 n ( n 6 ). Macmillan, New York, 1964. Zbl0192.11701MR168631
  44. P. Hall, The classification of prime-power groups. J. Reine Angew. Math. 182 (1940), 130–141. Zbl0023.21001MR3389
  45. F.-P. Heider und B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. J. Reine Angew. Math. 336 (1982), 1–25. Zbl0505.12016MR671319
  46. D. Hilbert, Ueber den Dirichlet’schen biquadratischen Zahlkörper. Math. Annalen 45 (1894), 309–340. MR1510866
  47. R. James, The groups of order p 6 ( p an odd prime). Math. Comp. 34 (1980), no. 150, 613–637. Zbl0428.20013MR559207
  48. Y. Kishi, The Spiegelungssatz for p = 5 from a constructive approach. Math. J. Okayama Univ. 47 (2005), 1–27. Zbl1161.11396MR2198857
  49. H. Kisilevsky, Number fields with class number congruent to 4 mod 8 and Hilbert’s theorem 94 . J. Number Theory 8 (1976), 271–279. Zbl0334.12019MR417128
  50. H. Koch und B. B. Venkov, Über den p -Klassenkörperturm eines imaginär-quadratischen Zahlkörpers. Astérisque 24–25 (1975), 57–67. Zbl0335.12021
  51. C. R. Leedham-Green and S. McKay, On the classification of p -groups of maximal class. Q. J. Math. Oxford 35 (1984), 293–304. Zbl0547.20013MR755666
  52. C. R. Leedham-Green and S. McKay, The structure of groups of prime power order. London Math. Soc. Monographs, New Series, 27, Oxford Univ. Press, 2002. Zbl1008.20001MR1918951
  53. C. R. Leedham-Green and M. F. Newman, Space groups and groups of prime power order I. Arch. Math. 35 (1980), 193–203. Zbl0437.20016MR583590
  54. F. Lemmermeyer, On 2 -class field towers of some imaginary quadratic number fields. Abh. Math. Sem. Hamburg 67 (1997), 205–214. Zbl0919.11075MR1481537
  55. F. Lemmermeyer, Class groups of dihedral extensions. Math. Nachr. 278 (2005), no. 6, 679–691. Zbl1067.11069MR2135500
  56. The MAGMA Group, MAGMA Computational Algebra System, Version 2.19-2. Sydney, 2012, (http://magma.maths.usyd.edu.au). 
  57. D. C. Mayer, Principalization in complex S 3 -fields. Congressus Numerantium 80 (1991), 73–87, Proceedings of the Twentieth Manitoba Conference on Numerical Mathematics and Computing, Winnipeg, Manitoba, Canada, 1990. Zbl0733.11037MR1124863
  58. D. C. Mayer, The second p -class group of a number field. Int. J. Number Theory 8 (2012), no. 2, 471–505, DOI 10.1142/S179304211250025X. Zbl1261.11070MR2890488
  59. D. C. Mayer, Transfers of metabelian p -groups. Monatsh. Math. 166 (2012), no. 3–4, 467–495, DOI 10.1007/s00605-010-0277-x. Zbl1261.11071MR2925150
  60. D. C. Mayer, Principalisation algorithm via class group structure. Preprint, 2011. 
  61. D. C. Mayer, Metabelian 3 -groups with abelianisation of type ( 9 , 3 ) . Preprint, 2011. 
  62. D. C. Mayer, The distribution of second p -class groups on coclass graphs. 27th Journées Arithmétiques, Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania, 2011. 
  63. C. McLeman, p -tower groups over quadratic imaginary number fields. Ann. Sci. Math. Québec 32 (2008), no. 2, 199–209. Zbl1213.11189MR2562045
  64. R. J. Miech, Metabelian p -groups of maximal class. Trans. Amer. Math. Soc. 152 (1970), 331–373. Zbl0249.20009MR276343
  65. K. Miyake, Algebraic investigations of Hilbert’s Theorem 94 , the principal ideal theorem and the capitulation problem. Expo. Math. 7 (1989), 289–346. Zbl0704.11048MR1018712
  66. B. Nebelung, Klassifikation metabelscher 3 -Gruppen mit Faktorkommutatorgruppe vom Typ ( 3 , 3 ) und Anwendung auf das Kapitulationsproblem. Inauguraldissertation, Band 1, Universität zu Köln, 1989. 
  67. B. Nebelung, Anhang zu Klassifikation metabelscher 3 -Gruppen mit Faktorkommutatorgruppe vom Typ ( 3 , 3 ) und Anwendung auf das Kapitulationsproblem. Inauguraldissertation, Band 2, Universität zu Köln, 1989. 
  68. M. F. Newman, Groups of prime-power order. Groups — Canberra 1989, Lecture Notes in Mathematics, vol. 1456, Springer, 1990, pp. 49–62. Zbl0726.20011MR1092222
  69. M. F. Newman and E. A. O’Brien, Classifying 2 -groups by coclass. Trans. Amer. Math. Soc. 351 (1999), 131–169. Zbl0914.20020MR1458332
  70. H. Reichardt, Arithmetische Theorie der kubischen Zahlkörper als Radikalkörper. Monatsh. Math. Phys. 40 (1933), 323–350. Zbl0008.10302MR1550211
  71. A. Scholz, Über die Beziehung der Klassenzahlen quadratischer Körper zueinander. J. Reine Angew. Math. 166 (1932), 201–203. Zbl0004.05104
  72. A. Scholz und O. Taussky, Die Hauptideale der kubischen Klassenkörper imaginär quadratischer Zahlkörper: ihre rechnerische Bestimmung und ihr Einfluß auf den Klassenkörperturm. J. Reine Angew. Math. 171 (1934), 19–41. Zbl0009.10202
  73. O. Schreier, Über die Erweiterung von Gruppen II. Abh. Math. Sem. Univ. Hamburg 4 (1926), 321–346. Zbl52.0113.04MR3069457
  74. I. R. Shafarevich, Extensions with prescribed ramification points, Inst. Hautes Études Sci. Publ. Math.18 (1963), 71–95. Zbl0118.27505MR176979
  75. O. Taussky, A remark on the class field tower. J. London Math. Soc. 12 (1937), 82–85. Zbl63.0144.03MR1574658
  76. O. Taussky, A remark concerning Hilbert’s Theorem 94 . J. Reine Angew. Math. 239/240 (1970), 435–438. Zbl0186.09002MR279070

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.