Spectral curves, opers and integrable systems

David Ben-Zvi; Edward Frenkel

Publications Mathématiques de l'IHÉS (2001)

  • Volume: 94, page 87-159
  • ISSN: 0073-8301

How to cite


Ben-Zvi, David, and Frenkel, Edward. "Spectral curves, opers and integrable systems." Publications Mathématiques de l'IHÉS 94 (2001): 87-159. <http://eudml.org/doc/104180>.

author = {Ben-Zvi, David, Frenkel, Edward},
journal = {Publications Mathématiques de l'IHÉS},
language = {eng},
pages = {87-159},
publisher = {Institut des Hautes Etudes Scientifiques},
title = {Spectral curves, opers and integrable systems},
url = {http://eudml.org/doc/104180},
volume = {94},
year = {2001},

AU - Ben-Zvi, David
AU - Frenkel, Edward
TI - Spectral curves, opers and integrable systems
JO - Publications Mathématiques de l'IHÉS
PY - 2001
PB - Institut des Hautes Etudes Scientifiques
VL - 94
SP - 87
EP - 159
LA - eng
UR - http://eudml.org/doc/104180
ER -


  1. [AB] M. ADAMS and M. BERGVELT, The Krichever map, vector bundles over algebraic curves, and Heisenberg algebras, Comm. Math. Phys., 154 (1993), 265-305. Zbl0787.35085MR1224080
  2. [AMP] A. ÁLVAREZ, J. MUÑOZ and F. PLAZA, The algebraic formalism of soliton equations over arbitrary base fields, Workshop on Abelian Varieties and Theta Functions (Morelia, 1996), Aportaciones Mat. Investig., 13, Soc. Mat. Mexicana (3-40), 1998 (alg-geom/9606009). Zbl0995.14021MR1781698
  3. [Ba] A. BALAN, Les équations mKdV généralisées, Preprint école Polytechnique, No. 98-5, April 1998. 
  4. [BL] A. BEAUVILLE and Y. LASZLO, Conformal blocks and generalized theta functions, Comm. Math. Phys., 164 (1993), 385-419. Zbl0815.14015MR1289330
  5. [BB] A. BEILINSON and J. BERNSTEIN, A Proof of Jantzen Conjectures, Advances in Soviet Mathematics, Vol. 16, Part 1 (1-50), 1993. Zbl0790.22007MR1237825
  6. [BD1] A. BEILINSON and V. DRINFELD, Opers, Preprint, 1994. MR1255247
  7. [BD2] A. BEILINSON and V. DRINFELD, Quantization of Hitchin’s Integrable System and Hecke Eigensheaves, in preparation. 
  8. [BS] A. BLUM and U. STUHLER, Drinfeld modules and elliptic sheaves, Vector bundles on curves - new directions (eds S. Kumar et al.) LNM 1649, 1997. Zbl0958.11045MR1605029
  9. [Ch1] I. CHEREDNIK, Group interpretation of Baker functions and τ -function, Uspekhi Mat. Nauk 38, No. 6 (1983), 133-134. Zbl0567.20031MR728740
  10. [Ch2] I. CHEREDNIK, Determination of τ - functions for generalized affine Lie algebras, Funct. Anal. Appli. Prilozhen, 17, No. 3 (1983), 93-95. Zbl0528.17004MR714237
  11. [Ch3] I. CHEREDNIK, Functional realizations of basic representations of factorizable Lie groups and Lie algebras, Funct. Anal. Appl., 19, 193-206 (1985). Zbl0577.17011MR806849
  12. [CC] C. CONTOU-CARRÉRE, Jacobienne locale, groupe de bivecteurs de Witt universel, et symbole modéré, C. R. Acad. Sci. Paris, série I 318 (1994), 743-746. Zbl0840.14031MR1272340
  13. [DJKM] E. DATE, M. JIMBO, M. KASHIWARA, T. MIWA, Transformation groups for soliton equations, in: M. Jimbo, T. Miwa (eds.), Non-linear Integrable Systems - Classical Theory and Quantum Theory, pp. 39-120, Singapore: World Scientific, 1983. Zbl0571.35098MR725700
  14. [dGHM] M. de GROOT, T. HOLLOWOOD and L. MIRAMONTES, Generalized Drinfeld-Sokolov hierarchies, Comm. Math. Phys., 145 (1992), 57-84. Zbl0749.35044MR1155284
  15. [DF] F. DELDUC and L. FEHÉR, Regular conjugacy classes in the Weyl group and integrable hierarchies, J. Phys., A28 (1995), 5843-5882. Zbl0878.35099MR1364763
  16. [D] R. DONAGI, Decomposition of spectral covers, Astérisque, 218 (1993), 145-175. Zbl0820.14031MR1265312
  17. [DG] R. DONAGI and D. GAITSGORY, The gerbe of Higgs bundles, Preprint math. AG/0005132. Zbl1083.14519MR1903115
  18. [DM] R. DONAGI and E. MARKMAN, Spectral covers, algebraically completely integrable Hamiltonian systems, and moduli of bundles, Integrable systems and quantum groups, Lecture Notes in Math., 1620, Springer 1995. Zbl0853.35100MR1397273
  19. [Dr] V. DRINFELD, Commutative subrings of certain noncommutative rings, Funct. Anal Appl., 11, No. 1 (1977), 11-14. Zbl0368.14011MR476732
  20. [DSi] V. DRINFELD and C. SIMPSON, B-structures on G-bundles and local triviality, Math. Res. Lett., 2, No. 6 (1995), 823-829. Zbl0874.14043MR1362973
  21. [DS] V. DRINFELD and V. SOKOLOV, Lie algebras and equations of Korteweg-de Vries type, Journal of Soviet Mathematics, vol. 30 (1985), 1975-2035. Zbl0578.58040MR760998
  22. [EF1] B. ENRIQUEZ and E. FRENKEL, Equivalence of two approaches to integrable equations of KdV type, Comm. Math. Phys., 185 (1997), 211-230. Zbl0873.35080MR1463040
  23. [EF2] B. ENRIQUEZ and E. FRENKEL, Geometric interpretation of the Poisson structure in affine Toda field theories, Duke Math. J., 92 (1998), 459-495. Zbl1047.37506MR1620526
  24. [Fa] G. FALTINGS, Stable G-bundles and projective connections, J. Alg. Geom., 2 (1993), 507-568. Zbl0790.14019MR1211997
  25. [Fe] L. FEHÉR, KdV type systems and W -algebras in the Drinfeld-Sokolov approach, Preprint hepth/9510001. 
  26. [FHM] L. FEHÉR, J. HARNAD and I. MARSHALL, Generalized Drinfeld-Sokolov reductions and KdV type hierarchies, Comm. Math. Phys., 154 (1993), 181-214. Zbl0773.35068MR1220953
  27. [FF1] B. FEIGIN, E. FRENKEL, Integrals of motion and quantum groups, in Lect. Notes in Math., 1620, pp. 349-418, Springer Verlag, 1995. Zbl0885.58034MR1397275
  28. [FF2] B. FEIGIN and E. FRENKEL, Kac-Moody groups and integrability of soliton equations, Invent. Math., 120 (1995), 379-408. Zbl0829.58021MR1329047
  29. [FF3] B. FEIGIN and E. FRENKEL, Integrable hierarchies and Wakimoto modules, in Differential Topology, Infinite- Dimensional Lie Algebras, and Applications: D. B. Fuchs’ 60th Anniversary Collection, A. Astashkevich and S. Tabachnikov (eds), pp. 27-60, AMS, 1999. Zbl0977.17020
  30. [F] E. FRENKEL, Five lectures on soliton equations, in Integral Systems, C.-L. Terng and K. Uhlenbeck (eds.), Surveys in Differential Geometry, vol. 4, pp. 131-180, International Press, 1998. Zbl0931.35147MR1726928
  31. [Gin] V. GINZBURG, Perverse Sheaves on a Loop Group and Langlands’ Duality, Preprint alg-geom/9511007. 
  32. [Ha] G. HARDER, Halbeinfache Gruppenschemata uber Dedekindringen, Invent. Math., 4 (1967), 165-191. Zbl0158.39502MR225785
  33. [Hi] N. HITCHIN, Stable bundles and integrable systems, Duke Math. J., 54 (1990), 91-114. Zbl0627.14024MR885778
  34. [Kac1] V. G. KAC, Infinite-dimensional algebras, Dedekind η -function, classical Möbius function and the very strange formula, Adv. Math., 30 (1978), 85-136. Zbl0391.17010MR513845
  35. [Kac2] V. G. KAC, Infinite-dimensional Lie algebras, third edition, Cambridge University Press, 1990. MR1104219
  36. [KP] V. G. KAC and D. PETERSON, 112 constructions of the basic representation of the loop group of E8, Proceedings of “Anomalies, geometry, topology” (Argonne, 1985), pp. 276-298, World Scientific, 1985. Zbl0642.17013
  37. [KSU] T. KATSURA, Y. SHIMIZU and K. UENO, Formal groups and conformal field theory over Z, in integrable systems in quantum field theory and statistical mechanics, Adv. Stud. Pure Math., 19, Boston (1989), Academic Press, 347-366. Zbl0715.14023MR1048600
  38. [KL] D. KAZHDAN and G. LUSZTIG, Fixed point varieties on affine flag manifolds, Israel J. of Math., 62, No. 1 (1988), 129-168. Zbl0658.22005MR947819
  39. [Kos] B. KOSTANT, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., 81 (1959), 973-1032. Zbl0099.25603MR114875
  40. [Kr] I. KRICHEVER, Algebro-geometric construction of the Zakharov-Shabat equations and their periodic solutions, Dokl. Akad. Nauk SSSR, 227, No. 2 (1976), 291-294. Zbl0361.35007MR413178
  41. [LS] Y. LASZLO and C. SORGER, The line bundles on the stack of parabolic G-torsors over curves and their sections, Ann. Sci. Ec. Norm. Sup., 30, No. 4 (1997), 499-525. Zbl0918.14004MR1456243
  42. [Lau1] G. LAUMON, Transformation de Fourier généralisée, Preprint alg-geom/9603004. 
  43. [Lau2] G. LAUMON, Sur les modules de Krichever, Preprint, Université de Paris-Sud, 86 T 20. 
  44. [LMB] G. LAUMON and L. MORET-BAILLY, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge 39. Springer-Verlag, Berlin, 2000. Zbl0945.14005MR1771927
  45. [LM] Y. LI and M. MULASE, Prym varieties and integrable systems, Comm. Anal. Geom., 5, No. 2 (1997), 279-332. Zbl0920.14010MR1483982
  46. [McK] H. McKEAN, Is there an infinite-dimensional algebraic geometry? Hints from KdV, Proc. Symp. Pure Math., 49, vol. I, pp. 27-37, AMS, 1989. Zbl0699.14053MR1013123
  47. [MV] I. MIRKOVIC and K. VILONEN, Perverse sheaves on loop Grassmannians and Langlands duality, Math. Res. Lett., 7 (2000), 13-24. Zbl0987.14015MR1748284
  48. [M1] M. MULASE, Cohomological structure in soliton equations and Jacobian varieties, J. Diff. Geom., 19 (1984), 403-430. Zbl0559.35076MR755232
  49. [M2] M. MULASE, Category of vector bundles on algebraic curves and infinite-dimensional Grassmannians, Int. J. Math., 1 (1990), 293-342. Zbl0723.14010MR1078516
  50. [M3] M. MULASE, Algebraic theory of the KP equations. Perspectives in mathematical physics, Conf. Proc. Lect. Notes Math. Phys. III., Cambridge MA (1994), Internat. Pres, 151-217. Zbl0837.35132MR1314667
  51. [Mum] D. MUMFORD, An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg-de Vries equation and related non-linear equations, Int. Symposium on Algebraic Geometry, Kyoto, pp. 115-153, Kinokuniya Book Store, 1977. Zbl0423.14007MR578857
  52. [N1] A. NAKAYASHIKI, Structure of Baker-Akhiezer modules of pricipally polarized abelian varieties, commuting partial differential operators and associated integrable systems, Duke Math J., 62 (1991), 315-358. Zbl0732.14008MR1104527
  53. [N2] A. NAKAYASHIKI, Commuting partial differential operators and vector bundles over abelian varieties, Amer. J. Math., 116 (1994), 65-100. Zbl0809.14016MR1262427
  54. [PS] A. PRESSLEY and G. SEGAL, Loop Groups, Oxford University Press, 1986. Zbl0618.22011MR900587
  55. [Ro1] M. ROTHSTEIN, Connections on the total Picard sheaf and the KP hierarchy, Acta Applicandae Mathematicae, 42 (1996), 297-308. Zbl0848.58032MR1376873
  56. [Ro2] M. ROTHSTEIN, Sheaves with connection on abelian varieties, Duke Math J., 84, No. 3 (1996), 565-598. Zbl0877.14032MR1408538
  57. [Sor] C. SORGER, Lectures on moduli of principal G-bundles over algebraic curves. School on Algebraic Geometry (Trieste, 1999) ICTP, Lect. Notes 1, Abdus Salam ICTP, (Trieste, 2000), 1-57. Zbl0989.14009MR1795860
  58. [Tel] C. TELEMAN, Borel-Weil-Bott theory on the moduli stack of G-torsors over a curve, Invent. Math., 134 (1998), 1-57. Zbl0980.14025MR1646586
  59. [SW] G. SEGAL and G. WILSON, Loop groups and equations of KdV type, Publ. Math. IHES, 61 (1985), 5-65. Zbl0592.35112MR783348
  60. [W] G. WILSON, Habillage et fonctions , C. R. Acad. Sci. Paris, 299, Sér. I, No. 13 (1984), 587-590. Zbl0564.35086MR771354

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.