Hyperbolicity of renormalization of critical circle maps

Michael Yampolsky

Publications Mathématiques de l'IHÉS (2003)

  • Volume: 96, page 1-41
  • ISSN: 0073-8301

How to cite

top

Yampolsky, Michael. "Hyperbolicity of renormalization of critical circle maps." Publications Mathématiques de l'IHÉS 96 (2003): 1-41. <http://eudml.org/doc/104187>.

@article{Yampolsky2003,
author = {Yampolsky, Michael},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {critical circle maps; renormalization; hyperbolicity; universality; horseshoe attractor},
language = {eng},
pages = {1-41},
publisher = {Institut des Hautes Etudes Scientifiques},
title = {Hyperbolicity of renormalization of critical circle maps},
url = {http://eudml.org/doc/104187},
volume = {96},
year = {2003},
}

TY - JOUR
AU - Yampolsky, Michael
TI - Hyperbolicity of renormalization of critical circle maps
JO - Publications Mathématiques de l'IHÉS
PY - 2003
PB - Institut des Hautes Etudes Scientifiques
VL - 96
SP - 1
EP - 41
LA - eng
KW - critical circle maps; renormalization; hyperbolicity; universality; horseshoe attractor
UR - http://eudml.org/doc/104187
ER -

References

top
  1. [BR] L. BERS and H. L. ROYDEN, Holomorphic families of injections, Acta Math., 157 (1986), 259-286. Zbl0619.30027MR857675
  2. [Do] A. DOUADY, Does a Julia set depend continuously on the polynomial?, in Complex dynamical systems: The mathematics behind the Mandelbrot set and Julia sets, R. L. Devaney (ed.), Proc. of Symposia in Applied Math., Vol. 49, Amer. Math. Soc., 1994, pp. 91-138. Zbl0934.30023MR1315535
  3. [DH1] A. DOUADY and J. H. HUBBARD, Etude dynamique des polynômes complexes, I-II, Pub. Math. d’Orsay, 1984. Zbl0552.30018
  4. [DH2] A. DOUADY and J. H. HUBBARD, On the dynamics of polynomial-like mappings, Ann. Sci. Éc. Norm. Sup., 18 (1985), 287-343. Zbl0587.30028MR816367
  5. [dF1] E. DE FARIA, Proof of universality for critical circle mappings, Thesis, CUNY, 1992. 
  6. [dF2] E. DE FARIA, Asymptotic rigidity of scaling ratios for critical circle mappings, Ergodic Theory Dynam. Systems, 19 (1999), no. 4, 995-1035. Zbl0996.37045MR1709428
  7. [dFdM1] E. DE FARIA and W. DE MELO, Rigidity of critical circle mappings I, J. Eur. Math. Soc. (JEMS), 1 (1999), no. 4, 339-392. Zbl0988.37047MR1728375
  8. [dFdM2] E. DE FARIA and W. DE MELO, Rigidity of critical circle mappings II, J. Amer. Math. Soc., 13 (2000), no. 2, 343-370. Zbl0988.37048MR1711394
  9. [Ep1] A. EPSTEIN, Towers of finite type complex analytic maps, PhD Thesis, CUNY, 1993. 
  10. [EKT] A. EPSTEIN, L. KEEN and C. TRESSER, The set of maps with any given rotation interval is contractible, Commun. Math. Phys., 173 (1995), 313-333. Zbl0839.58021MR1355627
  11. [EY] A. EPSTEIN and M. YAMPOLSKY, The universal parabolic map. Erg. Th. & Dyn. Systems, to appear. 
  12. [EE] J.-P. ECKMANN and H. EPSTEIN, On the existence of fixed points of the composition operator for circle maps, Commun. Math. Phys., 107 (1986), 213-231. Zbl0603.58004MR863640
  13. [FKS] M. FEIGENBAUM, L. KADANOFF, and S. SHENKER, Quasi-periodicity in dissipative systems. A renormalization group analysis, Physica, 5D (1982), 370-386. MR680571
  14. [He] M. HERMAN, Conjugaison quasi-symmetrique des homeomorphismes analytiques du cercle a des rotations, manuscript. 
  15. [Keen] L. KEEN, Dynamics of holomorphic self-maps of C, in Holomorphic functions and moduli I, D. DRASIN et al. (eds.), Springer-Verlag, New York, 1988. Zbl0676.58011MR955806
  16. [Lan1] O. E. LANFORD, Renormalization group methods for critical circle mappings with general rotation number, in VIIIth International Congress on Mathematical Physics (Marseille, 1986), pp. 532-536, World Sci. Publishing, Singapore, 1987. MR915597
  17. [Lan2] O. E. LANFORD, Renormalization group methods for critical circle mappings, Nonlinear evolution and chaotic phenomena, NATO Adv. Sci. Inst. Ser. B: Phys., 176, pp. 25-36, Plenum, New York, 1988. Zbl0707.58043
  18. [Lyu2] M. LYUBICH, Renormalization ideas in conformal dynamics, Cambridge Seminar “Current Developments in Math.”, May 1995, pp. 155-184, International Press, 1995, Cambridge, MA. Zbl0877.58046
  19. [Lyu3] M. LYUBICH, Dynamics of quadratic polynomials, I-II, Acta Math., 178 (1997), 185-297. Zbl0908.58053MR1459261
  20. [Lyu4] M. LYUBICH, Feigenbaum-Coullet-Tresser Universality and Milnor’s Hairiness Conjecture, Ann. of Math. (2), 149 (1999), no. 2, 319-420. Zbl0945.37012
  21. [Lyu5] M. LYUBICH, Almost every real quadratic map is either regular or stochastic, Ann. of Math. (2), 156 (2002), no. 1, 1-78. Zbl1160.37356MR1935840
  22. [LY] M. LYUBICH and M. YAMPOLSKY, Dynamics of quadratic polynomials: complex bounds for real maps, Ann. l’Inst. Fourier 47, 4 (1997), 1219-1255. Zbl0881.58053
  23. [MP] R. S. MACKAY and I. C. PERCIVAL, Universal small-scale structure near the boundary of Siegel disks of arbitrary rotation number, Physica, 26D (1987), 193-202. Zbl0612.58028MR892444
  24. [MSS] R. MAÑÉ, P. SAD and D. SULLIVAN, On the dynamics of rational maps, Ann. Sci. Éc. Norm. Sup., 16 (1983), 193-217. Zbl0524.58025MR732343
  25. [McM1] C. MCMULLEN, Complex dynamics and renormalization, Annals of Math. Studies, v.135, Princeton Univ. Press, 1994. Zbl0822.30002MR1312365
  26. [McM2] C. MCMULLEN, Renormalization and 3-manifolds which fiber over the circle, Annals of Math. Studies, Princeton University Press, 1996. Zbl0860.58002MR1401347
  27. [Mes] B. D. MESTEL, A computer assisted proof of universality for cubic critical maps of the circle with golden mean rotation number, PhD Thesis, University of Warwick, 1985. 
  28. [Mil] J. MILNOR, Dynamics in one complex variable, Introductory lectures, Friedr. Vieweg & Sohn, Braunschweig, 1999. Zbl0946.30013MR1721240
  29. [MvS] W. DE MELO and S. van STRIEN, One dimensional dynamics, Springer, 1993. Zbl0791.58003MR1239171
  30. [ORSS] S. OSTLUND, D. RAND, J. SETHNA, and E. SIGGIA, Universal properties of the transition from quasi- periodicity to chaos in dissipative systems, Physica, 8D (1983), 303-342. Zbl0538.58025MR719630
  31. [Sul1] D. SULLIVAN, Quasiconformal homeomorphisms and dynamics, topology and geometry, Proc. ICM-86, Berkeley, v. II, 1216-1228. Zbl0698.58030MR934326
  32. [Sul2] D. SULLIVAN, Bounds, quadratic differentials, and renormalization conjectures, AMS Centennial Publications, 2, Mathematics into Twenty-first Century (1992). Zbl0936.37016MR1184622
  33. [Sh] M. SHISHIKURA, The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. of Math. (2), 147 (1998), no. 2, 225-267. Zbl0922.58047MR1626737
  34. [Sw1] G. SWIATEK, Rational rotation numbers for maps of the circle, Commun. Math. Phys., 119 (1988), 109-128. Zbl0656.58017MR968483
  35. [Ya1] M. YAMPOLSKY, Complex bounds for renormalization of critical circle maps, Erg. Th. & Dyn. Systems, 19 (1999), 227-257. Zbl0918.58049MR1677153
  36. [Ya2] M. YAMPOLSKY, The attractor of renormalization and rigidity of towers of critical circle maps, Commun. Math. Phys., 218 (2001), no. 3, 537-568. Zbl0978.37033MR1828852
  37. [Ya3] M. YAMPOLSKY, The global horseshoe for the renormalization of critical circle maps, Preprint, 2002. 
  38. [Yoc] J.-C. YOCCOZ, Il n’ya pas de contre-example de Denjoy analytique, C.R. Acad. Sci. Paris, 298 (1984) série I, 141-144. Zbl0573.58023

NotesEmbed ?

top

You must be logged in to post comments.