Complex a priori bounds revisited
Following Favre, we define a holomorphic germ to be rigid if the union of the critical set of all iterates has simple normal crossing singularities. We give a partial classification of contracting rigid germs in arbitrary dimensions up to holomorphic conjugacy. Interestingly enough, we find new resonance phenomena involving the differential of and its linear action on the fundamental group of the complement of the critical set.
è un particolare operatore di minimizzazione per forme di Dirichlet definite su un sottoinsieme finito di un frattale che è, in un certo senso, una sorta di frontiera di . Viene talvolta chiamato mappa di rinormalizzazione ed è stato usato per definire su un analogo del funzionale e un moto Browniano. In questo lavoro si provano alcuni risultati sull'unicità dell'autoforma (rispetto a ), e sulla convergenza dell'iterata di rinormalizzata. Questi risultati sono collegati con l'unicità...
A unified introduction to the dynamics of interval exchange maps and related topics, such as the geometry of translation surfaces, renormalization operators, and Teichmüller flows, starting from the basic definitions and culminating with the proof that almost every interval exchange map is uniquely ergodic. Great emphasis is put on examples and geometric interpretations of the main ideas.
We prove that the linearization of a germ of holomorphic map of the type has a -holomorphic dependence on the multiplier . -holomorphic functions are -Whitney smooth functions, defined on compact subsets and which belong to the kernel of the operator. The linearization is analytic for and the unit circle appears as a natural boundary (because of resonances,i.e.roots of unity). However the linearization is still defined at most points of , namely those points which lie “far enough from...
Nous mettons en perspective différentes méthodes de changement d’échelles et illustrons leur pertinence en mettant sur pieds des preuves simples et élémentaires de plusieurs théorèmes biens connus en analyse ou géométrie complexe. Les situations abordées sont variées et la plupart des théorèmes démontrés sont des classiques initialement obtenus entre la fin du xixe et la seconde moitié du xxe siècle.
Viene considerato il problema della stabilità di un punto fisso per un germe di diffeomorfismo di più variabili complesse cercando un coniugio con la sua parte lineare: Problema del centro di Schröder-Siegel. Dopo aver formulato il problema e ricordato i principali risultati nel caso di diffeomorfismi olomorfi, mostriamo come estendere il problema ad alcune situazioni non olomorfe, in particolare ci interesseremo al caso di germi Gevrey. Concluderemo con un'applicazione rivolta a mostrare la stabilità...
We describe the well studied process of renormalization of quadratic polynomials from the point of view of their natural extensions. In particular, we describe the topology of the inverse limit of infinitely renormalizable quadratic polynomials and prove that when they satisfy a priori bounds, the topology is rigid modulo combinatorial equivalence.