Smooth quasiregular mappings with branching
Publications Mathématiques de l'IHÉS (2004)
- Volume: 100, page 153-170
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topBonk, Mario, and Heinonen, Juha. "Smooth quasiregular mappings with branching." Publications Mathématiques de l'IHÉS 100 (2004): 153-170. <http://eudml.org/doc/104198>.
@article{Bonk2004,
abstract = {We give an example of a $\mathcal \{C\}^\{3-\epsilon \}$-smooth quasiregular mapping in 3-space with nonempty branch set. Moreover, we show that the branch set of an arbitrary quasiregular mapping inn-space has Hausdorff dimension quantitatively bounded away from n. By using the second result, we establish a new, qualitatively sharp relation between smoothness and branching.},
author = {Bonk, Mario, Heinonen, Juha},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {differentiable quasiregular mappings; branch set},
language = {eng},
pages = {153-170},
publisher = {Springer},
title = {Smooth quasiregular mappings with branching},
url = {http://eudml.org/doc/104198},
volume = {100},
year = {2004},
}
TY - JOUR
AU - Bonk, Mario
AU - Heinonen, Juha
TI - Smooth quasiregular mappings with branching
JO - Publications Mathématiques de l'IHÉS
PY - 2004
PB - Springer
VL - 100
SP - 153
EP - 170
AB - We give an example of a $\mathcal {C}^{3-\epsilon }$-smooth quasiregular mapping in 3-space with nonempty branch set. Moreover, we show that the branch set of an arbitrary quasiregular mapping inn-space has Hausdorff dimension quantitatively bounded away from n. By using the second result, we establish a new, qualitatively sharp relation between smoothness and branching.
LA - eng
KW - differentiable quasiregular mappings; branch set
UR - http://eudml.org/doc/104198
ER -
References
top- 1. B. Bojarski and T. Iwaniec, Analytical foundations of the theory of quasiconformal mappings in R n , Ann. Acad. Sci. Fenn., Ser. A I, Math., 8 (1983), 257–324. Zbl0548.30016MR731786
- 2. G. David and T. Toro, Reifenberg flat metric spaces, snowballs, and embeddings, Math. Ann., 315 (1999), 641–710. Zbl0944.53004MR1731465
- 3. S. K. Donaldson and D. Sullivan, Quasiconformal 4-manifolds, Acta Math., 163 (1989), 181–252. Zbl0704.57008MR1032074
- 4. H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften 153, Springer, New York (1969). Zbl0176.00801MR257325
- 5. T. Iwaniec and G. Martin, Geometric function theory and non-linear analysis, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York (2001). Zbl1045.30011MR1859913
- 6. R. Kaufman, J. T. Tyson, and J.-M. Wu, Smooth quasiregular maps with branching in R 4, Preprint (2004).
- 7. M. Kiikka, Diffeomorphic approximation of quasiconformal and quasisymmetric homeomorphisms, Ann. Acad. Sci. Fenn., Ser. A I, Math., 8 (1983), 251–256. Zbl0565.30015MR731785
- 8. O. Martio and S. Rickman, Measure properties of the branch set and its image of quasiregular mappings, Ann. Acad. Sci. Fenn., Ser. A I, 541 (1973), 16 pp. Zbl0265.30027MR352453
- 9. O. Martio, U. Srebro, and J. Väisälä, Normal families, multiplicity and the branch set of quasiregular maps, Ann. Acad. Sci. Fenn., Ser. A I, Math., 24 (1999), 231–252. Zbl0923.30015MR1678028
- 10. P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, Vol. 44, Cambridge University Press, Cambridge (1995). Zbl0819.28004MR1333890
- 11. E. E. Moise, Geometric topology in dimensions 2 and 3, Graduate Texts in Mathematics, Vol. 47, Springer, New York (1977). Zbl0349.57001MR488059
- 12. J. Munkres, Obstructions to the smoothing of piecewise-differentiable homeomorphisms, Ann. Math. (2), 72 (1960), 521–554. Zbl0108.18101MR121804
- 13. Yu. G. Reshetnyak, Space mappings with bounded distortion, Sibirsk. Mat. Z., 8 (1967), 629–659. Zbl0167.06601MR994644
- 14. Yu. G. Reshetnyak, Space mappings with bounded distortion, Translations of Mathematical Monographs, Vol. 73, American Mathematical Society, Providence, RI (1989). Zbl0667.30018MR994644
- 15. S. Rickman, Quasiregular Mappings, Springer, Berlin (1993). Zbl0816.30017MR1238941
- 16. S. Rickman and U. Srebro, Remarks on the local index of quasiregular mappings, J. Anal. Math., 46 (1986), 246–250. Zbl0603.30025MR861703
- 17. J. Sarvas, The Hausdorff dimension of the branch set of a quasiregular mapping, Ann. Acad. Sci. Fenn., Ser. A I, Math., 1 (1975), 297–307. Zbl0326.30020MR396945
- 18. D. Sullivan, Hyperbolic geometry and homeomorphisms, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), 543–555, Academic Press, New York, 1979. Zbl0478.57007MR537749
- 19. J. Väisälä, A survey of quasiregular maps in R n , Proceedings of the International Congress of Mathematicians (Helsinki, 1978), 685–691, Acad. Sci. Fennica, Helsinki, 1980. Zbl0427.30019MR562672
- 20. J. Väisälä, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer, Berlin (1971). Zbl0221.30031MR454009
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.