Smooth quasiregular maps with branching in
Robert Kaufman; Jeremy T. Tyson; Jang-Mei Wu
Publications Mathématiques de l'IHÉS (2005)
- Volume: 101, page 209-241
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topKaufman, Robert, Tyson, Jeremy T., and Wu, Jang-Mei. "Smooth quasiregular maps with branching in $\mathbf {R}^n$." Publications Mathématiques de l'IHÉS 101 (2005): 209-241. <http://eudml.org/doc/104210>.
@article{Kaufman2005,
abstract = {According to a theorem of Martio, Rickman and Väisälä, all nonconstant Cn/(n-2)-smooth quasiregular maps in Rn, n≥3, are local homeomorphisms. Bonk and Heinonen proved that the order of smoothness is sharp in R3. We prove that the order of smoothness is sharp in R4. For each n≥5 we construct a C1+ε(n)-smooth quasiregular map in Rn with nonempty branch set.},
author = {Kaufman, Robert, Tyson, Jeremy T., Wu, Jang-Mei},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {space quasiregular mappings},
language = {eng},
pages = {209-241},
publisher = {Springer},
title = {Smooth quasiregular maps with branching in $\mathbf \{R\}^n$},
url = {http://eudml.org/doc/104210},
volume = {101},
year = {2005},
}
TY - JOUR
AU - Kaufman, Robert
AU - Tyson, Jeremy T.
AU - Wu, Jang-Mei
TI - Smooth quasiregular maps with branching in $\mathbf {R}^n$
JO - Publications Mathématiques de l'IHÉS
PY - 2005
PB - Springer
VL - 101
SP - 209
EP - 241
AB - According to a theorem of Martio, Rickman and Väisälä, all nonconstant Cn/(n-2)-smooth quasiregular maps in Rn, n≥3, are local homeomorphisms. Bonk and Heinonen proved that the order of smoothness is sharp in R3. We prove that the order of smoothness is sharp in R4. For each n≥5 we construct a C1+ε(n)-smooth quasiregular map in Rn with nonempty branch set.
LA - eng
KW - space quasiregular mappings
UR - http://eudml.org/doc/104210
ER -
References
top- 1. A. Beurling and L. V. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math., 96 (1956), 125–142. Zbl0072.29602MR86869
- 2. C. J. Bishop, A quasisymmetric surface with no rectifiable curves, Proc. Amer. Math. Soc., 127 (1999), 2035–2040. Zbl0920.30016MR1610908
- 3. M. Bonk and J. Heinonen, Smooth quasiregular mappings with branching, Publ. Math., Inst. Hautes Études Sci., 100 (2004), 153–170. Zbl1063.30021MR2102699
- 4. A. V. Černavskii, Finite-to-one open mappings of manifolds, Mat. Sb. (N.S.), 65 (1964), 357–369. Zbl0129.15003MR172256
- 5. A. V. Černavskii, Addendum to the paper “Finite-to-one open mappings of manifolds”, Mat. Sb. (N.S.), 66 (1965), 471–472. Zbl0129.15101
- 6. P. T. Church, Differentiable open maps on manifolds, Trans. Amer. Math. Soc., 109 (1963), 87–100. Zbl0202.54801MR154296
- 7. G. David and T. Toro, Reifenberg flat metric spaces, snowballs, and embeddings, Math. Ann., 315 (1999), 641–710. Zbl0944.53004MR1731465
- 8. S. K. Donaldson and D. P. Sullivan, Quasiconformal 4-manifolds, Acta Math., 163 (1989), 181–252. Zbl0704.57008MR1032074
- 9. W. H. J. Fuchs, Théorie de l’approximation des fonctions d’une variable complexe, Séminaire de Mathématiques Supérieures, no. 26 (Été 1967). Les Presses de l’Université de Montréal, Montréal, Que. (1968). Zbl0199.39701
- 10. J. Heinonen, The branch set of a quasiregular mapping, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing (2002), pp. 691–700. Zbl1005.30019MR1957076
- 11. J. Heinonen and S. Rickman, Quasiregular maps S 3→S 3 with wild branch sets, Topology, 37 (1998), 1–24. Zbl0895.30016
- 12. J. Heinonen and S. Rickman, Geometric branched covers between generalized manifolds, Duke Math. J., 113 (2002), 465–529. Zbl1017.30023MR1909607
- 13. T. Iwaniec and G. Martin, Geometric function theory and non-linear analysis, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2001). Zbl1045.30011MR1859913
- 14. M. Kiikka, Diffeomorphic approximation of quasiconformal and quasisymmetric homeomorphisms, Ann. Acad. Sci. Fenn., Ser. A I, Math., 8 (1983), 251–256. Zbl0565.30015MR731785
- 15. O. Martio and S. Rickman, Measure properties of the branch set and its image of quasiregular mappings, Ann. Acad. Sci. Fenn., Ser. A I, 541 (1973), 16. Zbl0265.30027MR352453
- 16. O. Martio, S. Rickman and J. Väisälä, Topological and metric properties of quasiregular mappings, Ann. Acad. Sci. Fenn., Ser. A I, 488 (1971), 31. Zbl0223.30018MR299782
- 17. P. Mattila, Geometry of sets and measures in Euclidean spaces, vol. 44 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (1995). Zbl0819.28004MR1333890
- 18. Y. G. Reshetnyak, Space mappings with bounded distortion, Sibirsk. Mat. Z., 8 (1967), 629–659. Zbl0167.06601MR994644
- 19. Y. G. Reshetnyak, Space mappings with bounded distortion, vol. 73 of Translations of Mathematical Monographs, American Mathematical Society, Providence (1989). Translated from the Russian by H. H. McFadden. Zbl0667.30018MR994644
- 20. S. Rickman, Quasiregular Mappings, Springer, Berlin (1993). Zbl0816.30017MR1238941
- 21. S. Rickman, Construction of quasiregular mappings, in Quasiconformal mappings and analysis (Ann Arbor, MI 1995), Springer, New York (1998), pp. 337–345. Zbl0888.30018MR1488458
- 22. J. Sarvas, The Hausdorff dimension of the branch set of a quasiregular mapping, Ann. Acad. Sci. Fenn., Ser. A I, Math., 1 (1975), 297–307. Zbl0326.30020MR396945
- 23. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J. (1970). Zbl0207.13501MR290095
- 24. D. Sullivan, Hyperbolic geometry and homeomorphisms, in Geometric topology (Proc. Georgia Topology Conf., Athens, Ga. 1977), Academic Press, New York (1979), pp. 543–555. Zbl0478.57007MR537749
- 25. P. Tukia and J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn., Ser. A I, Math., 5 (1980), 97–114. Zbl0403.54005MR595180
- 26. P. Tukia and J. Väisälä, Quasiconformal extension from dimension n to n+1, Ann. of Math. (2), 115 (1982), 331–348. Zbl0484.30017MR647809
- 27. P. Tukia and J. Väisälä, Extension of embeddings close to isometries or similarities, Ann. Acad. Sci. Fenn., Ser. A I, Math., 9 (1984), 153–175. Zbl0533.30020MR752401
- 28. J. T. Tyson and J.-M. Wu, Quasiconformal dimensions of self-similar fractals, Rev. Mat. Iberoamer., accepted for publication. Zbl1108.30015MR2268118
- 29. J. Väisälä, Lectures onn-dimensional quasiconformal mappings, no. 229 in Lecture Notes in Mathematics, Springer, Berlin (1971). Zbl0221.30031MR454009
- 30. J. Väisälä, A survey of quasiregular maps in R n , in Proceedings of the International Congress of Mathematicians (Helsinki 1978), Acad. Sci. Fennica, Helsinki (1980), pp. 685–691. Zbl0427.30019MR562672
- 31. J. Väisälä, Bi-Lipschitz and quasisymmetric extension properties, Ann. Acad. Sci. Fenn., Ser. A I, Math., 11 (1986), 239–274. Zbl0607.30019MR853960
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.