Smooth quasiregular maps with branching in 𝐑 n

Robert Kaufman; Jeremy T. Tyson; Jang-Mei Wu

Publications Mathématiques de l'IHÉS (2005)

  • Volume: 101, page 209-241
  • ISSN: 0073-8301

Abstract

top
According to a theorem of Martio, Rickman and Väisälä, all nonconstant Cn/(n-2)-smooth quasiregular maps in Rn, n≥3, are local homeomorphisms. Bonk and Heinonen proved that the order of smoothness is sharp in R3. We prove that the order of smoothness is sharp in R4. For each n≥5 we construct a C1+ε(n)-smooth quasiregular map in Rn with nonempty branch set.

How to cite

top

Kaufman, Robert, Tyson, Jeremy T., and Wu, Jang-Mei. "Smooth quasiregular maps with branching in $\mathbf {R}^n$." Publications Mathématiques de l'IHÉS 101 (2005): 209-241. <http://eudml.org/doc/104210>.

@article{Kaufman2005,
abstract = {According to a theorem of Martio, Rickman and Väisälä, all nonconstant Cn/(n-2)-smooth quasiregular maps in Rn, n≥3, are local homeomorphisms. Bonk and Heinonen proved that the order of smoothness is sharp in R3. We prove that the order of smoothness is sharp in R4. For each n≥5 we construct a C1+ε(n)-smooth quasiregular map in Rn with nonempty branch set.},
author = {Kaufman, Robert, Tyson, Jeremy T., Wu, Jang-Mei},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {space quasiregular mappings},
language = {eng},
pages = {209-241},
publisher = {Springer},
title = {Smooth quasiregular maps with branching in $\mathbf \{R\}^n$},
url = {http://eudml.org/doc/104210},
volume = {101},
year = {2005},
}

TY - JOUR
AU - Kaufman, Robert
AU - Tyson, Jeremy T.
AU - Wu, Jang-Mei
TI - Smooth quasiregular maps with branching in $\mathbf {R}^n$
JO - Publications Mathématiques de l'IHÉS
PY - 2005
PB - Springer
VL - 101
SP - 209
EP - 241
AB - According to a theorem of Martio, Rickman and Väisälä, all nonconstant Cn/(n-2)-smooth quasiregular maps in Rn, n≥3, are local homeomorphisms. Bonk and Heinonen proved that the order of smoothness is sharp in R3. We prove that the order of smoothness is sharp in R4. For each n≥5 we construct a C1+ε(n)-smooth quasiregular map in Rn with nonempty branch set.
LA - eng
KW - space quasiregular mappings
UR - http://eudml.org/doc/104210
ER -

References

top
  1. 1. A. Beurling and L. V. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math., 96 (1956), 125–142. Zbl0072.29602MR86869
  2. 2. C. J. Bishop, A quasisymmetric surface with no rectifiable curves, Proc. Amer. Math. Soc., 127 (1999), 2035–2040. Zbl0920.30016MR1610908
  3. 3. M. Bonk and J. Heinonen, Smooth quasiregular mappings with branching, Publ. Math., Inst. Hautes Études Sci., 100 (2004), 153–170. Zbl1063.30021MR2102699
  4. 4. A. V. Černavskii, Finite-to-one open mappings of manifolds, Mat. Sb. (N.S.), 65 (1964), 357–369. Zbl0129.15003MR172256
  5. 5. A. V. Černavskii, Addendum to the paper “Finite-to-one open mappings of manifolds”, Mat. Sb. (N.S.), 66 (1965), 471–472. Zbl0129.15101
  6. 6. P. T. Church, Differentiable open maps on manifolds, Trans. Amer. Math. Soc., 109 (1963), 87–100. Zbl0202.54801MR154296
  7. 7. G. David and T. Toro, Reifenberg flat metric spaces, snowballs, and embeddings, Math. Ann., 315 (1999), 641–710. Zbl0944.53004MR1731465
  8. 8. S. K. Donaldson and D. P. Sullivan, Quasiconformal 4-manifolds, Acta Math., 163 (1989), 181–252. Zbl0704.57008MR1032074
  9. 9. W. H. J. Fuchs, Théorie de l’approximation des fonctions d’une variable complexe, Séminaire de Mathématiques Supérieures, no. 26 (Été 1967). Les Presses de l’Université de Montréal, Montréal, Que. (1968). Zbl0199.39701
  10. 10. J. Heinonen, The branch set of a quasiregular mapping, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing (2002), pp. 691–700. Zbl1005.30019MR1957076
  11. 11. J. Heinonen and S. Rickman, Quasiregular maps S 3→S 3 with wild branch sets, Topology, 37 (1998), 1–24. Zbl0895.30016
  12. 12. J. Heinonen and S. Rickman, Geometric branched covers between generalized manifolds, Duke Math. J., 113 (2002), 465–529. Zbl1017.30023MR1909607
  13. 13. T. Iwaniec and G. Martin, Geometric function theory and non-linear analysis, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2001). Zbl1045.30011MR1859913
  14. 14. M. Kiikka, Diffeomorphic approximation of quasiconformal and quasisymmetric homeomorphisms, Ann. Acad. Sci. Fenn., Ser. A I, Math., 8 (1983), 251–256. Zbl0565.30015MR731785
  15. 15. O. Martio and S. Rickman, Measure properties of the branch set and its image of quasiregular mappings, Ann. Acad. Sci. Fenn., Ser. A I, 541 (1973), 16. Zbl0265.30027MR352453
  16. 16. O. Martio, S. Rickman and J. Väisälä, Topological and metric properties of quasiregular mappings, Ann. Acad. Sci. Fenn., Ser. A I, 488 (1971), 31. Zbl0223.30018MR299782
  17. 17. P. Mattila, Geometry of sets and measures in Euclidean spaces, vol. 44 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (1995). Zbl0819.28004MR1333890
  18. 18. Y. G. Reshetnyak, Space mappings with bounded distortion, Sibirsk. Mat. Z., 8 (1967), 629–659. Zbl0167.06601MR994644
  19. 19. Y. G. Reshetnyak, Space mappings with bounded distortion, vol. 73 of Translations of Mathematical Monographs, American Mathematical Society, Providence (1989). Translated from the Russian by H. H. McFadden. Zbl0667.30018MR994644
  20. 20. S. Rickman, Quasiregular Mappings, Springer, Berlin (1993). Zbl0816.30017MR1238941
  21. 21. S. Rickman, Construction of quasiregular mappings, in Quasiconformal mappings and analysis (Ann Arbor, MI 1995), Springer, New York (1998), pp. 337–345. Zbl0888.30018MR1488458
  22. 22. J. Sarvas, The Hausdorff dimension of the branch set of a quasiregular mapping, Ann. Acad. Sci. Fenn., Ser. A I, Math., 1 (1975), 297–307. Zbl0326.30020MR396945
  23. 23. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J. (1970). Zbl0207.13501MR290095
  24. 24. D. Sullivan, Hyperbolic geometry and homeomorphisms, in Geometric topology (Proc. Georgia Topology Conf., Athens, Ga. 1977), Academic Press, New York (1979), pp. 543–555. Zbl0478.57007MR537749
  25. 25. P. Tukia and J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn., Ser. A I, Math., 5 (1980), 97–114. Zbl0403.54005MR595180
  26. 26. P. Tukia and J. Väisälä, Quasiconformal extension from dimension n to n+1, Ann. of Math. (2), 115 (1982), 331–348. Zbl0484.30017MR647809
  27. 27. P. Tukia and J. Väisälä, Extension of embeddings close to isometries or similarities, Ann. Acad. Sci. Fenn., Ser. A I, Math., 9 (1984), 153–175. Zbl0533.30020MR752401
  28. 28. J. T. Tyson and J.-M. Wu, Quasiconformal dimensions of self-similar fractals, Rev. Mat. Iberoamer., accepted for publication. Zbl1108.30015MR2268118
  29. 29. J. Väisälä, Lectures onn-dimensional quasiconformal mappings, no. 229 in Lecture Notes in Mathematics, Springer, Berlin (1971). Zbl0221.30031MR454009
  30. 30. J. Väisälä, A survey of quasiregular maps in R n , in Proceedings of the International Congress of Mathematicians (Helsinki 1978), Acad. Sci. Fennica, Helsinki (1980), pp. 685–691. Zbl0427.30019MR562672
  31. 31. J. Väisälä, Bi-Lipschitz and quasisymmetric extension properties, Ann. Acad. Sci. Fenn., Ser. A I, Math., 11 (1986), 239–274. Zbl0607.30019MR853960

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.