Statistical properties of unimodal maps
Artur Avila; Carlos Gustavo Moreira
Publications Mathématiques de l'IHÉS (2005)
- Volume: 101, page 1-67
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topReferences
top- 1. V. Arnold, Dynamical systems, in Development of mathematics 1950–2000, pp. 33–61, Birkhäuser, Basel 2000. Zbl0963.37003MR1796837
- 2. A. Avila, M. Lyubich, W. de Melo, Regular or stochastic dynamics in real analytic families of unimodal maps. Invent. Math., 154 (2003), 451–550. Zbl1050.37018MR2018784
- 3. A. Avila, C. G. Moreira, Statistical properties of unimodal maps: the quadratic family. Ann. Math., 161 (2005), 827–877. Zbl1078.37029MR2153401
- 4. A. Avila, C. G. Moreira, Statistical properties of unimodal maps: smooth families with negative Schwarzian derivative. Geometric methods in dynamics. I. Astérisque, 286 (2003), 81–118. Zbl1046.37021MR2052298
- 5. A. Avila, C. G. Moreira, Phase-Parameter relation and sharp statistical properties for general families of unimodal maps, preprint (http://www.arXiv.org), to appear in Contemp. Math., volume on “Geometry and Dynamics”, ed. by E. Ghys, J. Eells, M. Lyubich, J. Palis, J. Seade. Zbl1145.37022
- 6. M. Benedicks, L. Carleson, On iterations of 1-ax 2 on (-1,1). Ann. Math., 122 (1985), 1–25. Zbl0597.58016MR799250
- 7. A. M. Blokh, M. Yu. Lyubich, Measurable dynamics of S-unimodal maps of the interval. Ann. Sci. Éc. Norm. Supér., IV. Sér., 24 (1991), 545–573. Zbl0790.58024MR1132757
- 8. M. Jacobson, Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Commun. Math. Phys., 81 (1981), 39–88. Zbl0497.58017MR630331
- 9. G. Keller, T. Nowicki, Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps. Commun. Math. Phys., 149 (1992), 31–69. Zbl0763.58024MR1182410
- 10. O. S. Kozlovski, Getting rid of the negative Schwarzian derivative condition. Ann. Math., 152 (2000), 743–762. Zbl0988.37044MR1815700
- 11. O. S. Kozlovski, Axiom A maps are dense in the space of unimodal maps in the Ck topology. Ann. Math., 157 (2003), 1–43. Zbl1215.37022MR1954263
- 12. A. N. Livsic, The homology of dynamical systems. Usp. Mat. Nauk, 27 (1972), no. 3(165), 203–204. MR394768
- 13. M. Lyubich, Combinatorics, geometry and attractors of quasi-quadratic maps. Ann. Math., 140 (1994), 347–404. Note on the geometry of generalized parabolic towers. Manuscript (2000) (http://www.arXiv.org). Zbl0821.58014MR1298717
- 14. M. Lyubich, Dynamics of quadratic polynomials, I–II. Acta Math., 178 (1997), 185–297. Zbl0908.58053MR1459261
- 15. M. Lyubich, Dynamics of quadratic polynomials, III. Parapuzzle and SBR measure. Astérisque, 261 (2000), 173–200. Zbl1044.37038MR1755441
- 16. M. Lyubich, Feigenbaum-Coullet-Tresser Universality and Milnor’s Hairiness Conjecture. Ann. Math., 149 (1999), 319–420. Zbl0945.37012
- 17. M. Lyubich, Almost every real quadratic map is either regular or stochastic. Ann. Math., 156 (2002), 1–78. Zbl1160.37356MR1935840
- 18. R. Mañé, Hyperbolicity, sinks and measures for one-dimensional dynamics. Commun. Math. Phys., 100 (1985), 495–524. Zbl0583.58016MR806250
- 19. M. Martens, W. de Melo, The multipliers of periodic points in one-dimensional dynamics, Nonlinearity, 12 (1999), 217–227. Zbl0989.37032MR1677736
- 20. W. de Melo, S. van Strien, One-dimensional dynamics. Springer 1993. Zbl0791.58003MR1239171
- 21. J. Milnor, Fubini foiled: Katok’s paradoxical example in measure theory. Math. Intell., 19 (1997), 30–32. Zbl0883.28004
- 22. J. Milnor, W. Thurston, On iterated maps of the interval, Dynamical Systems, Proc. U. Md., 1986–87, ed. by J. Alexander. Lect. Notes Math., 1342 (1988), 465–563. Zbl0664.58015MR970571
- 23. T. Nowicki, D. Sands, Non-uniform hyperbolicity and universal bounds for S-unimodal maps. Invent. Math., 132 (1998), 633–680. Zbl0908.58016MR1625708
- 24. D. Ruelle, A. Wilkinson. Absolutely singular dynamical foliations. Commun. Math. Phys., 219 (2001), 481–487. Zbl1031.37029MR1838747
- 25. M. Shub, D. Sullivan, Expanding endomorphisms of the circle revisited. Ergodic Theory Dyn. Syst., 5 (1985), 285–289. Zbl0583.58022MR796755
- 26. M. Shub, A. Wilkinson, Pathological foliations and removable zero exponents. Invent. Math., 139 (2000), 495–508. Zbl0976.37013MR1738057
- 27. M. Tsujii, Positive Lyapunov exponents in families of one dimensional dynamical systems. Invent. Math., 111 (1993), 113–137. Zbl0787.58029MR1193600