Measurable dynamics of S -unimodal maps of the interval

A. M. Blokh; M. Yu. Lyubich

Annales scientifiques de l'École Normale Supérieure (1991)

  • Volume: 24, Issue: 5, page 545-573
  • ISSN: 0012-9593

How to cite

top

Blokh, A. M., and Lyubich, M. Yu.. "Measurable dynamics of $S$-unimodal maps of the interval." Annales scientifiques de l'École Normale Supérieure 24.5 (1991): 545-573. <http://eudml.org/doc/82305>.

@article{Blokh1991,
author = {Blokh, A. M., Lyubich, M. Yu.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {one-dimensional measurable dynamics; S-unimodal map; interval; attractors; Cantor attractors},
language = {eng},
number = {5},
pages = {545-573},
publisher = {Elsevier},
title = {Measurable dynamics of $S$-unimodal maps of the interval},
url = {http://eudml.org/doc/82305},
volume = {24},
year = {1991},
}

TY - JOUR
AU - Blokh, A. M.
AU - Lyubich, M. Yu.
TI - Measurable dynamics of $S$-unimodal maps of the interval
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1991
PB - Elsevier
VL - 24
IS - 5
SP - 545
EP - 573
LA - eng
KW - one-dimensional measurable dynamics; S-unimodal map; interval; attractors; Cantor attractors
UR - http://eudml.org/doc/82305
ER -

References

top
  1. [B1] A. M. BLOKH, Decomposition of Dynamical Systems on an Interval [Russ. Math. Surveys, Vol. 38, No. 5, 1983, pp. 133-134 (translation from Russian)]. Zbl0557.28017MR86d:54060
  2. [B2] A. M. BLOKH, On the Dynamical Systems on One-Dimensional Branched Manifolds, I, II, III, (Theory of Functions, Funct. Anal. Appl. (Kharkov), Vol. 46, 1986, pp. 8-18 ; Vol. 47, 1987, pp. 67-77 ; Vol. 48, 1987, pp. 32-46). Zbl0701.58022MR89i:58057
  3. [BL1] A. M. BLOKH and M. Yu. LYUBICH, Attractors of Maps of the Interval (Funct. Anal. Appl., Vol. 21, 1987, pp. 70-71 (there is a translation into English)). Zbl0653.58022
  4. [BL2] A. M. BLOKH and M. Yu. LYUBICH, On Typical Behaviour of Trajectories of Transformations of the Interval. [Theory of Functions, Funct. Anal. Appl. (Kharkov), Vol. 49, 1988, pp. 5-15 (in Russian)]. Zbl0666.58031
  5. [BL3] A. M. BLOKH and M. Yu. LYUBICH, Attractors of Maps of the Interval, Banach Center Publications (of the Semester on Dynamical Systems held in Warsaw, 1986), Vol. 23, 1989. Zbl0698.58037
  6. [BL4] A. B. BLOKH and M. Yu. LYUBICH, Ergodicity of Transitive Unimodal Maps of the Interval (Ukrainian Math. J., Vol. 41, No. 7, 1989, pp. 985-988). Zbl0774.58018
  7. [BL5] A. M. BLOKH and M. Yu. LYUBICH, Ergodic Properties of Maps of the Interval (Funct. Anal. Appl., Vol. 23, No. 1, 1989, pp. 59-60). Zbl0704.58015
  8. [BL6] A. M. BLOKH and M. Yu. LYUBICH, On the Decomposition of One-Dimensional Dynamical Systems into Ergodic Components. (Algebra and Analysis (Leningrad Math. J.), Vol. 1, No. 1, 1989, pp. 128-145). Zbl0718.58024
  9. [BL7] A. M. BLOKH and M. Yu LYUBICH, Measure of Solenoidal Attractors of Unimodal Maps of the Interval [Math. Notes, Vol. 48, No. 5, 1990, pp. 15-20]. Zbl0774.58026
  10. [BL8] A. M. BLOKH and M. Yu. LYUBICH, Measure and Dimension of Solenoidal Attractors of One-Dimensional Dynamical Systems (Comm. Math. Phys., Vol. 127, 1990, pp. 573-583). Zbl0721.58033MR91g:58164
  11. [BL9] A. M. BLOKH and M. Yu. LYUBICH, Non-Existence of Wandering Intervals and Structure of Topological Attractors of One-Dimensional Dynamical Systems, II. The Smooth Case (Ergodic Theor. Dynam. Syst., Vol. 9, No. 4, 1989, pp. 751-758). Zbl0665.58024
  12. [CE] P. COLLET and J.-P. ECKMANN, Iterated Maps of the Interval as Dynamical Systems, Birkhaüser, Boston, 1981. 
  13. [G1] J. GUCKENHEIMER, Sensitive Dependence to Initial Conditions for One-Dimensional Maps (Comm. Math. Phys., Vol. 70, 1979, pp. 133-160). Zbl0429.58012MR82c:58037
  14. [G2] J. GUCKENHEIMER, Limit Sets of S-Unimodal Maps with Zero Entropy (Comm. Math. Phys., Vol. 110, 1987, pp. 655-659). Zbl0625.58027MR88i:58111
  15. [He] Von G. HELMBERG, Über rein dissipative transformationen (Math. Z., Vol. 90, No. 1, 1965, pp. 41-53). Zbl0178.38701
  16. [HK] F. HOFBAUER and G. KELLER, Quadratic Maps Without Asymptotic Measure, Preprint, 1989. 
  17. [J] S. JOHNSON, Singular Measures without Restrictive Intervals (Comm. Math. Phys., Vol. 110, 1987, pp. 185-190). Zbl0641.58024MR88g:58093
  18. [JR] L. JONKER and D. RAND, Bifurcations in One Dimension I. The Non-Wandering Set (Invent. Math., Vol. 62, 1981, pp. 347-365). Zbl0475.58014MR83d:58057a
  19. [K] U. KRENGEL, Ergodic Theorems, de Gruyter Studies in Math., Vol. 6, 1985, Berlin, etc. : Walter de Gruyter. Zbl0575.28009MR87i:28001
  20. [L1] M. Yu. LYUBICH, Measurable Dynamics of the Exponent (Syberian Math. J., Vol. 28, No. 5, 1987, pp. 111-127). Zbl0667.58037
  21. [L2] M. Yu. LYUBICH, Non-Existence of Wandering Intervals and Structure of Topological Attractors of One-Dimensional Dynamical Systems. I. The Case of Negative Schwarzian Derivative (Ergodic Theor. Dynam. Syst., Vol. 9, No. 4, 1989, pp. 737-750). Zbl0665.58023
  22. [Le] F. LEDRAPPIER, Some Properties of Absolutely Continuous Invariant Measures on an Interval (Ergodic Theor. Dynam. Syst., Vol. 1, No. 1, 1981, pp. 77-93). Zbl0487.28015MR82k:28018
  23. [M] J. MILNOR, On the Concept of Attractor (Comm. Math. Phys., Vol. 99, 1985, pp. 177-195). Zbl0595.58028MR87i:58109a
  24. [Ma] R. MAÑ;E, Hyperbolicity, Sinks and Measure in One-Dimensional Dynamics (Comm. Math. Phys., Vol. 100, 1985, pp. 495-524). Zbl0583.58016MR87f:58131
  25. [Mi] MISIUREWICZ, Structure of Mappings of the Interval with Zero Entropy (Publ. Math. I.H.E.S., Vol. 53, 1981, pp. 17-51). Zbl0477.58030
  26. [MS] W. de MELO and S. J. van STRIEN, A Structure Theorem in One-Dimensional Dynamics, Preprint, 1986. 
  27. [MMS] M. MARTENS, W. de MELO and S. J. van STRIEN, Julia-Fatou-Sullivan Theory for Real One-Dimensional Dynamics, Preprint, 1988. 
  28. [MMSS] M. MARTENS, W. de MELO, S. J. van STRIEN and D. SULLIVAN, Bounded Geometry and Measure of the Attracting Cantor Set of Quadratic-Like Maps, Preprint, 1988. 
  29. [R] M. REES, The Exponential Map is Not Recurrent (Math. Z., Vol. 191, 1986, pp. 593-598). Zbl0595.30033MR87g:58063
  30. [Ro] V. A. ROKHLIN, Lectures on the Entropy Theory of Transformations with an Invariant Measure (Uspekhi Mat. Nauk., Vol. 22, No. 5, 1967, pp. 5-56). Zbl0174.45501MR36 #349
  31. [S] S. SULLIVAN, Quasi Conformal Homeomorphisms and Dynamics. I. (Ann. Math., Vol. 122, 1985, pp. 401-418). Zbl0589.30022
  32. [Si] D. SINGER, Stable Orbits and Bifurcations of Maps of the Interval (S.I.A.M. J. Appl. Math., Vol. 35, 1978, pp. 260-267). Zbl0391.58014MR58 #13206
  33. [vS] S. J. van STRIEN, On the Bifurcatons Creating Horseshoes (Springer Lect. Notes Math., Vol. 898, 1981, pp. 316-351). Zbl0491.58023MR83h:58072
  34. [Y] J.-C. YOCCOZ, Il n'y a pas de contre-exemple de Denjoy analytique (C.R. Acad. Sci. Paris, T. 289, Series I, 1984, pp. 141-144). Zbl0573.58023MR85j:58134

Citations in EuDML Documents

top
  1. Viviane Baladi, Marcelo Viana, Strong stochastic stability and rate of mixing for unimodal maps
  2. Artur Avila, Carlos Gustavo Moreira, Statistical properties of unimodal maps
  3. Viviane Baladi, Michael Benedicks, Véronique Maume-Deschamps, Almost sure rates of mixing for i.i.d. unimodal maps
  4. Tomasz Nowicki, Some dynamical properties of S-unimodal maps
  5. Henk Bruin, Stefano Luzzatto, Sebastian Van Strien, Decay of correlations in one-dimensional dynamics
  6. Neil Dobbs, On cusps and flat tops
  7. Henk Bruin, Weixiao Shen, Sebastian Van Strien, Existence of unique SRB-measures is typical for real unicritical polynomial families

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.