Which weakly ramified group actions admit a universal formal deformation?
Jakub Byszewski[1]; Gunther Cornelissen[1]
- [1] Universiteit Utrecht Mathematisch Instituut Postbus 80.010 3508 TA Utrecht (Nederland)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 3, page 877-902
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topByszewski, Jakub, and Cornelissen, Gunther. "Which weakly ramified group actions admit a universal formal deformation?." Annales de l’institut Fourier 59.3 (2009): 877-902. <http://eudml.org/doc/10422>.
@article{Byszewski2009,
abstract = {Consider a representation of a finite group $G$ as automorphisms of a power series ring $k[[t ]]$ over a perfect field $k$ of positive characteristic. Let $D$ be the associated formal mixed-characteristic deformation functor. Assume that the action of $G$ is weakly ramified, i.e., the second ramification group is trivial. Example: for a group action on an ordinary curve, the action of a ramification group on the completed local ring of any point is weakly ramified.We prove that the only such $D$ that are not pro-representable occur if $k$ has characteristic two and $G$ is of order two or isomorphic to a Klein group. Furthermore, we show that only the first of those has a non-pro-representable equicharacteristic deformation functor.},
affiliation = {Universiteit Utrecht Mathematisch Instituut Postbus 80.010 3508 TA Utrecht (Nederland); Universiteit Utrecht Mathematisch Instituut Postbus 80.010 3508 TA Utrecht (Nederland)},
author = {Byszewski, Jakub, Cornelissen, Gunther},
journal = {Annales de l’institut Fourier},
keywords = {Local group action; weak ramification; formal deformation; universality; Nottingham group},
language = {eng},
number = {3},
pages = {877-902},
publisher = {Association des Annales de l’institut Fourier},
title = {Which weakly ramified group actions admit a universal formal deformation?},
url = {http://eudml.org/doc/10422},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Byszewski, Jakub
AU - Cornelissen, Gunther
TI - Which weakly ramified group actions admit a universal formal deformation?
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 3
SP - 877
EP - 902
AB - Consider a representation of a finite group $G$ as automorphisms of a power series ring $k[[t ]]$ over a perfect field $k$ of positive characteristic. Let $D$ be the associated formal mixed-characteristic deformation functor. Assume that the action of $G$ is weakly ramified, i.e., the second ramification group is trivial. Example: for a group action on an ordinary curve, the action of a ramification group on the completed local ring of any point is weakly ramified.We prove that the only such $D$ that are not pro-representable occur if $k$ has characteristic two and $G$ is of order two or isomorphic to a Klein group. Furthermore, we show that only the first of those has a non-pro-representable equicharacteristic deformation functor.
LA - eng
KW - Local group action; weak ramification; formal deformation; universality; Nottingham group
UR - http://eudml.org/doc/10422
ER -
References
top- Michael Barr, Charles Wells, Toposes, triples and theories, Repr. Theory Appl. Categ. (2005) Zbl1081.18006MR2178101
- José Bertin, Ariane Mézard, Déformations formelles des revêtements sauvagement ramifiés de courbes algébriques, Invent. Math. 141 (2000), 195-238 Zbl0993.14014MR1767273
- N. Bourbaki, Éléments de mathématique. Part I. Les structures fondamentales de l’analyse. Livre II. Algèbre. Chapitre I. Structures algébriques, (1942), Hermann et Cie., Paris Zbl0060.06808MR11070
- Jakub Byszewski, Dévissage for local deformation functors Zbl1134.20302
- Gunther Cornelissen, Fumiharu Kato, Equivariant deformation of Mumford curves and of ordinary curves in positive characteristic, Duke Math. J. 116 (2003), 431-470 Zbl1092.14032MR1958094
- Gunther Cornelissen, Fumiharu Kato, Zur Entartung schwach verzweigter Gruppenoperationen auf Kurven, J. Reine Angew. Math. 589 (2005), 201-236 Zbl1084.14030MR2194683
- Gunther Cornelissen, Ariane Mézard, Relèvements des revêtements de courbes faiblement ramifiés, Math. Z. 254 (2006), 239-255 Zbl1108.14024MR2262702
- Tim Dokchitser, Quotients of functors of Artin rings Zbl1166.13015
- Barbara Fantechi, Marco Manetti, Obstruction calculus for functors of Artin rings. I, J. Algebra 202 (1998), 541-576 Zbl0981.13009MR1617687
- Alexander Grothendieck, Technique de descente et théorèmes d’existence en géométrie algébrique. II. Le théorème d’existence en théorie formelle des modules, Séminaire Bourbaki, Vol. 5 (1995), Exp. No. 195, 369-390, Soc. Math. France, Paris Zbl0234.14007
- Barry Mazur, An introduction to the deformation theory of Galois representations, Modular forms and Fermat’s last theorem (Boston, MA, 1995) (1997), 243-311, Springer, New York Zbl0901.11015MR1638481
- Shōichi Nakajima, -ranks and automorphism groups of algebraic curves, Trans. Amer. Math. Soc. 303 (1987), 595-607 Zbl0644.14010MR902787
- New horizons in pro- groups, 184 (2000), du SautoyMarcusM., Boston, MA Zbl0945.00009MR1765115
- Michael Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208-222 Zbl0167.49503MR217093
- Edoardo Sernesi, Deformations of algebraic schemes, 334 (2006), Springer-Verlag, Berlin Zbl1102.14001MR2247603
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.