Which weakly ramified group actions admit a universal formal deformation?

Jakub Byszewski[1]; Gunther Cornelissen[1]

  • [1] Universiteit Utrecht Mathematisch Instituut Postbus 80.010 3508 TA Utrecht (Nederland)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 3, page 877-902
  • ISSN: 0373-0956

Abstract

top
Consider a representation of a finite group G as automorphisms of a power series ring k [ [ t ] ] over a perfect field k of positive characteristic. Let D be the associated formal mixed-characteristic deformation functor. Assume that the action of G is weakly ramified, i.e., the second ramification group is trivial. Example: for a group action on an ordinary curve, the action of a ramification group on the completed local ring of any point is weakly ramified.We prove that the only such D that are not pro-representable occur if k has characteristic two and G is of order two or isomorphic to a Klein group. Furthermore, we show that only the first of those has a non-pro-representable equicharacteristic deformation functor.

How to cite

top

Byszewski, Jakub, and Cornelissen, Gunther. "Which weakly ramified group actions admit a universal formal deformation?." Annales de l’institut Fourier 59.3 (2009): 877-902. <http://eudml.org/doc/10422>.

@article{Byszewski2009,
abstract = {Consider a representation of a finite group $G$ as automorphisms of a power series ring $k[[t ]]$ over a perfect field $k$ of positive characteristic. Let $D$ be the associated formal mixed-characteristic deformation functor. Assume that the action of $G$ is weakly ramified, i.e., the second ramification group is trivial. Example: for a group action on an ordinary curve, the action of a ramification group on the completed local ring of any point is weakly ramified.We prove that the only such $D$ that are not pro-representable occur if $k$ has characteristic two and $G$ is of order two or isomorphic to a Klein group. Furthermore, we show that only the first of those has a non-pro-representable equicharacteristic deformation functor.},
affiliation = {Universiteit Utrecht Mathematisch Instituut Postbus 80.010 3508 TA Utrecht (Nederland); Universiteit Utrecht Mathematisch Instituut Postbus 80.010 3508 TA Utrecht (Nederland)},
author = {Byszewski, Jakub, Cornelissen, Gunther},
journal = {Annales de l’institut Fourier},
keywords = {Local group action; weak ramification; formal deformation; universality; Nottingham group},
language = {eng},
number = {3},
pages = {877-902},
publisher = {Association des Annales de l’institut Fourier},
title = {Which weakly ramified group actions admit a universal formal deformation?},
url = {http://eudml.org/doc/10422},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Byszewski, Jakub
AU - Cornelissen, Gunther
TI - Which weakly ramified group actions admit a universal formal deformation?
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 3
SP - 877
EP - 902
AB - Consider a representation of a finite group $G$ as automorphisms of a power series ring $k[[t ]]$ over a perfect field $k$ of positive characteristic. Let $D$ be the associated formal mixed-characteristic deformation functor. Assume that the action of $G$ is weakly ramified, i.e., the second ramification group is trivial. Example: for a group action on an ordinary curve, the action of a ramification group on the completed local ring of any point is weakly ramified.We prove that the only such $D$ that are not pro-representable occur if $k$ has characteristic two and $G$ is of order two or isomorphic to a Klein group. Furthermore, we show that only the first of those has a non-pro-representable equicharacteristic deformation functor.
LA - eng
KW - Local group action; weak ramification; formal deformation; universality; Nottingham group
UR - http://eudml.org/doc/10422
ER -

References

top
  1. Michael Barr, Charles Wells, Toposes, triples and theories, Repr. Theory Appl. Categ. (2005) Zbl1081.18006MR2178101
  2. José Bertin, Ariane Mézard, Déformations formelles des revêtements sauvagement ramifiés de courbes algébriques, Invent. Math. 141 (2000), 195-238 Zbl0993.14014MR1767273
  3. N. Bourbaki, Éléments de mathématique. Part I. Les structures fondamentales de l’analyse. Livre II. Algèbre. Chapitre I. Structures algébriques, (1942), Hermann et Cie., Paris Zbl0060.06808MR11070
  4. Jakub Byszewski, Dévissage for local deformation functors Zbl1134.20302
  5. Gunther Cornelissen, Fumiharu Kato, Equivariant deformation of Mumford curves and of ordinary curves in positive characteristic, Duke Math. J. 116 (2003), 431-470 Zbl1092.14032MR1958094
  6. Gunther Cornelissen, Fumiharu Kato, Zur Entartung schwach verzweigter Gruppenoperationen auf Kurven, J. Reine Angew. Math. 589 (2005), 201-236 Zbl1084.14030MR2194683
  7. Gunther Cornelissen, Ariane Mézard, Relèvements des revêtements de courbes faiblement ramifiés, Math. Z. 254 (2006), 239-255 Zbl1108.14024MR2262702
  8. Tim Dokchitser, Quotients of functors of Artin rings Zbl1166.13015
  9. Barbara Fantechi, Marco Manetti, Obstruction calculus for functors of Artin rings. I, J. Algebra 202 (1998), 541-576 Zbl0981.13009MR1617687
  10. Alexander Grothendieck, Technique de descente et théorèmes d’existence en géométrie algébrique. II. Le théorème d’existence en théorie formelle des modules, Séminaire Bourbaki, Vol. 5 (1995), Exp. No. 195, 369-390, Soc. Math. France, Paris Zbl0234.14007
  11. Barry Mazur, An introduction to the deformation theory of Galois representations, Modular forms and Fermat’s last theorem (Boston, MA, 1995) (1997), 243-311, Springer, New York Zbl0901.11015MR1638481
  12. Shōichi Nakajima, p -ranks and automorphism groups of algebraic curves, Trans. Amer. Math. Soc. 303 (1987), 595-607 Zbl0644.14010MR902787
  13. New horizons in pro- p groups, 184 (2000), du SautoyMarcusM., Boston, MA Zbl0945.00009MR1765115
  14. Michael Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208-222 Zbl0167.49503MR217093
  15. Edoardo Sernesi, Deformations of algebraic schemes, 334 (2006), Springer-Verlag, Berlin Zbl1102.14001MR2247603

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.