Cross ratios, surface groups, and diffeomorphisms of the circle
Publications Mathématiques de l'IHÉS (2007)
- Volume: 106, page 139-213
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topLabourie, François. "Cross ratios, surface groups, $PSL(n,\mathbf {R})$ and diffeomorphisms of the circle." Publications Mathématiques de l'IHÉS 106 (2007): 139-213. <http://eudml.org/doc/104227>.
@article{Labourie2007,
abstract = {This article relates representations of surface groups to cross ratios. We first identify a connected component of the space of representations into PSL(n,ℝ) – known as the n-Hitchin component– to a subset of the set of cross ratios on the boundary at infinity of the group. Similarly, we study some representations into $C^\{1,h\}(\mathbb \{T\})\rtimes \text\{Diff\}^\{h\}(\mathbb \{T\})$ associated to cross ratios and exhibit a “character variety” of these representations. We show that this character variety contains alln-Hitchin components as well as the set of negatively curved metrics on the surface.},
author = {Labourie, François},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {fundamental group representations; character variety; cross ratio; Hitchin component; higher Teichmüller theory},
language = {eng},
pages = {139-213},
publisher = {Springer},
title = {Cross ratios, surface groups, $PSL(n,\mathbf \{R\})$ and diffeomorphisms of the circle},
url = {http://eudml.org/doc/104227},
volume = {106},
year = {2007},
}
TY - JOUR
AU - Labourie, François
TI - Cross ratios, surface groups, $PSL(n,\mathbf {R})$ and diffeomorphisms of the circle
JO - Publications Mathématiques de l'IHÉS
PY - 2007
PB - Springer
VL - 106
SP - 139
EP - 213
AB - This article relates representations of surface groups to cross ratios. We first identify a connected component of the space of representations into PSL(n,ℝ) – known as the n-Hitchin component– to a subset of the set of cross ratios on the boundary at infinity of the group. Similarly, we study some representations into $C^{1,h}(\mathbb {T})\rtimes \text{Diff}^{h}(\mathbb {T})$ associated to cross ratios and exhibit a “character variety” of these representations. We show that this character variety contains alln-Hitchin components as well as the set of negatively curved metrics on the surface.
LA - eng
KW - fundamental group representations; character variety; cross ratio; Hitchin component; higher Teichmüller theory
UR - http://eudml.org/doc/104227
ER -
References
top- 1. D. V. Anosov, Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature, Tr. Mat. Inst. Steklova, vol. 90, 1967. Zbl0176.19101MR224110
- 2. M.F. Atiyah, R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. R. Soc. Lond., Ser. A, 308 (1983), 523-615 Zbl0509.14014MR702806
- 3. F. Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math., 92 (1988), 139-162 Zbl0653.32022MR931208
- 4. M. Bourdon, Sur le birapport au bord des CAT(-1)-espaces, Publ. Math., Inst. Hautes Études Sci., 83 (1996), 95-104 Zbl0883.53047MR1423021
- 5. S.B. Bradlow, O. García-Prada, P.B. Gothen, Maximal surface group representations in isometry groups of classical hermitian symmetric spaces, Geom. Dedicata, 122 (2006), 185-213 Zbl1132.14029MR2295550
- 6. S.B. Bradlow, O. García-Prada, P.B. Gothen, Surface group representations and U(p,q)-Higgs bundles, J. Differ. Geom., 64 (2003), 111-170 Zbl1070.53054MR2015045
- 7. S.B. Bradlow, O. García-Prada, P.B. Gothen, Moduli spaces of holomorphic triples over compact Riemann surfaces, Math. Ann., 328 (2004), 299-351 Zbl1041.32008MR2030379
- 8. M. Burger, A. Iozzi, F. Labourie, A. Wienhard, Maximal representations of surface groups: symplectic Anosov structures, Pure Appl. Math. Q., 1 (2005), 543-590 Zbl1157.53025MR2201327
- 9. M. Burger, A. Iozzi, A. Wienhard, Surface group representations with maximal Toledo invariant, C. R., Math., Acad. Sci. Paris, 336 (2003), 387-390 Zbl1035.32013MR1979350
- 10. C. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège, 1951, pp. 29–55. Zbl0054.07201MR42768
- 11. V.V. Fock, A.B. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math., Inst. Hautes Études Sci., 103 (2006), 1-211 Zbl1099.14025MR2233852
- 12. O. García-Prada, I. Mundet i Riera, Representations of the fundamental group of a closed oriented surface in Sp(4,ℝ), Topology, 43 (2004), 831-855 Zbl1070.14014MR2061209
- 13. É. Ghys, Flots d’Anosov dont les feuilletages stables sont différentiables, Ann. Sci. Éc. Norm. Supér., IV. Sér., 20 (1987), 251-270 Zbl0663.58025
- 14. W.M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math., 54 (1984), 200-225 Zbl0574.32032MR762512
- 15. W.M. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math., 85 (1986), 263-302 Zbl0619.58021MR846929
- 16. A. B. Goncharov, Polylogarithms and motivic Galois groups, Motives (Seattle, WA, 1991), Proc. Symp. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 43–96. Zbl0842.11043MR1265551
- 17. P.B. Gothen, Components of spaces of representations and stable triples, Topology, 40 (2001), 823-850 Zbl1066.14012MR1851565
- 18. O. Guichard, Composantes de Hitchin et représentations hyperconvexes de groupes de surface, to appear in J. Differ. Geom, (2005).
- 19. U. Hamenstädt, Cocycles, Hausdorff measures and cross ratios, Ergodic Theory Dyn. Syst., 17 (1997), 1061-1081 Zbl0906.58035MR1477033
- 20. N.J. Hitchin, The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc., III. Ser., 55 (1987), 59-126 Zbl0634.53045MR887284
- 21. N.J. Hitchin, Lie groups and Teichmüller space, Topology, 31 (1992), 449-473 Zbl0769.32008MR1174252
- 22. F. Labourie, Cross ratios, Anosov representations and the energy functional on Teichmüller space, to appear in Ann. Sci. Éc. Norm. Supér., IV. Sér. Zbl1160.37021
- 23. F. Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math., 165 (2006), 51-114 Zbl1103.32007MR2221137
- 24. F. Labourie and G. McShane, Cross ratios and identities for higher Teichmüller-Thurston theory, math.DG/0611245, 2006. Zbl1182.30075
- 25. F. Ledrappier, Structure au bord des variétés à courbure négative, Séminaire de Théorie Spectrale et Géométrie, No. 13, Année 1994–1995, Sémin. Théor. Spectr. Géom., vol. 13, Univ. Grenoble I, Saint, 1995, pp. 97–122. Zbl0931.53005MR1715960
- 26. G. McShane, Simple geodesics and a series constant over Teichmüller space, Invent. Math., 132 (1998), 607-632 Zbl0916.30039MR1625712
- 27. J.-P. Otal, Le spectre marqué des longueurs des surfaces à courbure négative, Ann. Math. (2), 131 (1990), 151-162 Zbl0699.58018MR1038361
- 28. J.-P. Otal, Sur la géometrie symplectique de l’espace des géodésiques d’une variété à courbure négative, Rev. Mat. Iberoam., 8 (1992), 441-456 Zbl0777.53042
- 29. A. Weinstein, The symplectic structure on moduli space, The Floer Memorial Volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 627–635. Zbl0834.58011MR1362845
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.