Cross ratios, surface groups, P S L ( n , 𝐑 ) and diffeomorphisms of the circle

François Labourie

Publications Mathématiques de l'IHÉS (2007)

  • Volume: 106, page 139-213
  • ISSN: 0073-8301

Abstract

top
This article relates representations of surface groups to cross ratios. We first identify a connected component of the space of representations into PSL(n,ℝ) – known as the n-Hitchin component– to a subset of the set of cross ratios on the boundary at infinity of the group. Similarly, we study some representations into C 1 , h ( 𝕋 ) Diff h ( 𝕋 ) associated to cross ratios and exhibit a “character variety” of these representations. We show that this character variety contains alln-Hitchin components as well as the set of negatively curved metrics on the surface.

How to cite

top

Labourie, François. "Cross ratios, surface groups, $PSL(n,\mathbf {R})$ and diffeomorphisms of the circle." Publications Mathématiques de l'IHÉS 106 (2007): 139-213. <http://eudml.org/doc/104227>.

@article{Labourie2007,
abstract = {This article relates representations of surface groups to cross ratios. We first identify a connected component of the space of representations into PSL(n,ℝ) – known as the n-Hitchin component– to a subset of the set of cross ratios on the boundary at infinity of the group. Similarly, we study some representations into $C^\{1,h\}(\mathbb \{T\})\rtimes \text\{Diff\}^\{h\}(\mathbb \{T\})$ associated to cross ratios and exhibit a “character variety” of these representations. We show that this character variety contains alln-Hitchin components as well as the set of negatively curved metrics on the surface.},
author = {Labourie, François},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {fundamental group representations; character variety; cross ratio; Hitchin component; higher Teichmüller theory},
language = {eng},
pages = {139-213},
publisher = {Springer},
title = {Cross ratios, surface groups, $PSL(n,\mathbf \{R\})$ and diffeomorphisms of the circle},
url = {http://eudml.org/doc/104227},
volume = {106},
year = {2007},
}

TY - JOUR
AU - Labourie, François
TI - Cross ratios, surface groups, $PSL(n,\mathbf {R})$ and diffeomorphisms of the circle
JO - Publications Mathématiques de l'IHÉS
PY - 2007
PB - Springer
VL - 106
SP - 139
EP - 213
AB - This article relates representations of surface groups to cross ratios. We first identify a connected component of the space of representations into PSL(n,ℝ) – known as the n-Hitchin component– to a subset of the set of cross ratios on the boundary at infinity of the group. Similarly, we study some representations into $C^{1,h}(\mathbb {T})\rtimes \text{Diff}^{h}(\mathbb {T})$ associated to cross ratios and exhibit a “character variety” of these representations. We show that this character variety contains alln-Hitchin components as well as the set of negatively curved metrics on the surface.
LA - eng
KW - fundamental group representations; character variety; cross ratio; Hitchin component; higher Teichmüller theory
UR - http://eudml.org/doc/104227
ER -

References

top
  1. 1. D. V. Anosov, Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature, Tr. Mat. Inst. Steklova, vol. 90, 1967. Zbl0176.19101MR224110
  2. 2. M.F. Atiyah, R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. R. Soc. Lond., Ser. A, 308 (1983), 523-615 Zbl0509.14014MR702806
  3. 3. F. Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math., 92 (1988), 139-162 Zbl0653.32022MR931208
  4. 4. M. Bourdon, Sur le birapport au bord des CAT(-1)-espaces, Publ. Math., Inst. Hautes Études Sci., 83 (1996), 95-104 Zbl0883.53047MR1423021
  5. 5. S.B. Bradlow, O. García-Prada, P.B. Gothen, Maximal surface group representations in isometry groups of classical hermitian symmetric spaces, Geom. Dedicata, 122 (2006), 185-213 Zbl1132.14029MR2295550
  6. 6. S.B. Bradlow, O. García-Prada, P.B. Gothen, Surface group representations and U(p,q)-Higgs bundles, J. Differ. Geom., 64 (2003), 111-170 Zbl1070.53054MR2015045
  7. 7. S.B. Bradlow, O. García-Prada, P.B. Gothen, Moduli spaces of holomorphic triples over compact Riemann surfaces, Math. Ann., 328 (2004), 299-351 Zbl1041.32008MR2030379
  8. 8. M. Burger, A. Iozzi, F. Labourie, A. Wienhard, Maximal representations of surface groups: symplectic Anosov structures, Pure Appl. Math. Q., 1 (2005), 543-590 Zbl1157.53025MR2201327
  9. 9. M. Burger, A. Iozzi, A. Wienhard, Surface group representations with maximal Toledo invariant, C. R., Math., Acad. Sci. Paris, 336 (2003), 387-390 Zbl1035.32013MR1979350
  10. 10. C. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège, 1951, pp. 29–55. Zbl0054.07201MR42768
  11. 11. V.V. Fock, A.B. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math., Inst. Hautes Études Sci., 103 (2006), 1-211 Zbl1099.14025MR2233852
  12. 12. O. García-Prada, I. Mundet i Riera, Representations of the fundamental group of a closed oriented surface in Sp(4,ℝ), Topology, 43 (2004), 831-855 Zbl1070.14014MR2061209
  13. 13. É. Ghys, Flots d’Anosov dont les feuilletages stables sont différentiables, Ann. Sci. Éc. Norm. Supér., IV. Sér., 20 (1987), 251-270 Zbl0663.58025
  14. 14. W.M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math., 54 (1984), 200-225 Zbl0574.32032MR762512
  15. 15. W.M. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math., 85 (1986), 263-302 Zbl0619.58021MR846929
  16. 16. A. B. Goncharov, Polylogarithms and motivic Galois groups, Motives (Seattle, WA, 1991), Proc. Symp. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 43–96. Zbl0842.11043MR1265551
  17. 17. P.B. Gothen, Components of spaces of representations and stable triples, Topology, 40 (2001), 823-850 Zbl1066.14012MR1851565
  18. 18. O. Guichard, Composantes de Hitchin et représentations hyperconvexes de groupes de surface, to appear in J. Differ. Geom, (2005). 
  19. 19. U. Hamenstädt, Cocycles, Hausdorff measures and cross ratios, Ergodic Theory Dyn. Syst., 17 (1997), 1061-1081 Zbl0906.58035MR1477033
  20. 20. N.J. Hitchin, The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc., III. Ser., 55 (1987), 59-126 Zbl0634.53045MR887284
  21. 21. N.J. Hitchin, Lie groups and Teichmüller space, Topology, 31 (1992), 449-473 Zbl0769.32008MR1174252
  22. 22. F. Labourie, Cross ratios, Anosov representations and the energy functional on Teichmüller space, to appear in Ann. Sci. Éc. Norm. Supér., IV. Sér. Zbl1160.37021
  23. 23. F. Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math., 165 (2006), 51-114 Zbl1103.32007MR2221137
  24. 24. F. Labourie and G. McShane, Cross ratios and identities for higher Teichmüller-Thurston theory, math.DG/0611245, 2006. Zbl1182.30075
  25. 25. F. Ledrappier, Structure au bord des variétés à courbure négative, Séminaire de Théorie Spectrale et Géométrie, No. 13, Année 1994–1995, Sémin. Théor. Spectr. Géom., vol. 13, Univ. Grenoble I, Saint, 1995, pp. 97–122. Zbl0931.53005MR1715960
  26. 26. G. McShane, Simple geodesics and a series constant over Teichmüller space, Invent. Math., 132 (1998), 607-632 Zbl0916.30039MR1625712
  27. 27. J.-P. Otal, Le spectre marqué des longueurs des surfaces à courbure négative, Ann. Math. (2), 131 (1990), 151-162 Zbl0699.58018MR1038361
  28. 28. J.-P. Otal, Sur la géometrie symplectique de l’espace des géodésiques d’une variété à courbure négative, Rev. Mat. Iberoam., 8 (1992), 441-456 Zbl0777.53042
  29. 29. A. Weinstein, The symplectic structure on moduli space, The Floer Memorial Volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 627–635. Zbl0834.58011MR1362845

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.