Cross ratios, Anosov representations and the energy functional on Teichmüller space

François Labourie

Annales scientifiques de l'École Normale Supérieure (2008)

  • Volume: 41, Issue: 3, page 439-471
  • ISSN: 0012-9593

Abstract

top
We study two classes of linear representations of a surface group: Hitchin and maximal symplectic representations. We relate them to cross ratios and thus deduce that they are displacing which means that their translation lengths are roughly controlled by the translations lengths on the Cayley graph. As a consequence, we show that the mapping class group acts properly on the space of representations and that the energy functional associated to such a representation is proper. This implies the existence of minimal surfaces in the quotient of the associated symmetric spaces, a fact which leads to two consequences: a rigidity result for maximal symplectic representations and a partial result concerning a purely holomorphic description of the Hichin component.

How to cite

top

Labourie, François. "Cross ratios, Anosov representations and the energy functional on Teichmüller space." Annales scientifiques de l'École Normale Supérieure 41.3 (2008): 439-471. <http://eudml.org/doc/272110>.

@article{Labourie2008,
abstract = {We study two classes of linear representations of a surface group: Hitchin and maximal symplectic representations. We relate them to cross ratios and thus deduce that they are displacing which means that their translation lengths are roughly controlled by the translations lengths on the Cayley graph. As a consequence, we show that the mapping class group acts properly on the space of representations and that the energy functional associated to such a representation is proper. This implies the existence of minimal surfaces in the quotient of the associated symmetric spaces, a fact which leads to two consequences: a rigidity result for maximal symplectic representations and a partial result concerning a purely holomorphic description of the Hichin component.},
author = {Labourie, François},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Hitchin components; energy; cross ratio; Toledo invariant; harmonic mappings; minimal surfaces},
language = {eng},
number = {3},
pages = {439-471},
publisher = {Société mathématique de France},
title = {Cross ratios, Anosov representations and the energy functional on Teichmüller space},
url = {http://eudml.org/doc/272110},
volume = {41},
year = {2008},
}

TY - JOUR
AU - Labourie, François
TI - Cross ratios, Anosov representations and the energy functional on Teichmüller space
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 3
SP - 439
EP - 471
AB - We study two classes of linear representations of a surface group: Hitchin and maximal symplectic representations. We relate them to cross ratios and thus deduce that they are displacing which means that their translation lengths are roughly controlled by the translations lengths on the Cayley graph. As a consequence, we show that the mapping class group acts properly on the space of representations and that the energy functional associated to such a representation is proper. This implies the existence of minimal surfaces in the quotient of the associated symmetric spaces, a fact which leads to two consequences: a rigidity result for maximal symplectic representations and a partial result concerning a purely holomorphic description of the Hichin component.
LA - eng
KW - Hitchin components; energy; cross ratio; Toledo invariant; harmonic mappings; minimal surfaces
UR - http://eudml.org/doc/272110
ER -

References

top
  1. [1] F. Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math.92 (1988), 139–162. Zbl0653.32022MR931208
  2. [2] R. Bowen, The equidistribution of closed geodesics, Amer. J. Math.94 (1972), 413–423. Zbl0249.53033MR315742
  3. [3] S. B. Bradlow, O. García-Prada & P. B. Gothen, Surface group representations and U ( p , q ) -Higgs bundles, J. Differential Geom.64 (2003), 111–170. Zbl1070.53054
  4. [4] S. B. Bradlow, O. García-Prada & P. B. Gothen, Moduli spaces of holomorphic triples over compact Riemann surfaces, Math. Ann.328 (2004), 299–351. Zbl1041.32008
  5. [5] S. B. Bradlow, O. García-Prada & P. B. Gothen, Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces, Geom. Dedicata122 (2006), 185–213. Zbl1132.14029
  6. [6] M. Burger & A. Iozzi, Bounded Kähler class rigidity of actions on Hermitian symmetric spaces, Ann. Sci. École Norm. Sup.37 (2004), 77–103. Zbl1061.32016
  7. [7] M. Burger, A. Iozzi, F. Labourie & A. Wienhard, Maximal representations of surface groups: symplectic Anosov structures, Pure Appl. Math. Q.1 (2005), 543–590. Zbl1157.53025
  8. [8] M. Burger, A. Iozzi & A. Wienhard, Surface group representations with maximal Toledo invariant, C. R. Math. Acad. Sci. Paris336 (2003), 387–390. Zbl1035.32013
  9. [9] M. Burger, A. Iozzi & A. Wienhard, Hermitian symmetric spaces and Kähler rigidity, preprint, 2006. Zbl1138.32012
  10. [10] S. Choi & W. M. Goldman, Convex real projective structures on closed surfaces are closed, Proc. Amer. Math. Soc.118 (1993), 657–661. Zbl0810.57005
  11. [11] K. Corlette, Flat G -bundles with canonical metrics, J. Differential Geom.28 (1988), 361–382. Zbl0676.58007MR965220
  12. [12] C. Croke & A. Fathi, An inequality between energy and intersection, Bull. London Math. Soc.22 (1990), 489–494. Zbl0719.53020
  13. [13] T. Delzant, O. Guichard, F. Labourie & S. Mozes, Well displacing representations and orbit maps, preprint, 2007. Zbl1281.20047
  14. [14] A. Domic & D. Toledo, The Gromov norm of the Kähler class of symmetric domains, Math. Ann.276 (1987), 425–432. Zbl0595.53061
  15. [15] S. K. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc.55 (1987), 127–131. Zbl0634.53046MR887285
  16. [16] V. Fock & A. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci.103 (2006), 1–211. Zbl1099.14025
  17. [17] O. García-Prada I. Mundet i Riera, Representations of the fundamental group of a closed oriented surface in Sp ( 4 , ) , Topology 43 (2004), 831–855. Zbl1070.14014
  18. [18] W. M. Goldman, Discontinuous group and the Euler class, Thèse, University of Berkeley, California, 1980. MR2630832
  19. [19] W. M. Goldman, Topological components of spaces of representations, Invent. Math.93 (1988), 557–607. Zbl0655.57019MR952283
  20. [20] W. M. Goldman, Convex real projective structures on compact surfaces, J. Differential Geom.31 (1990), 791–845. Zbl0711.53033MR1053346
  21. [21] W. M. Goldman & R. A. Wentworth, Energy of twisted harmonic maps of Riemann surfaces, in In the tradition of Ahlfors-Bers. IV, Contemp. Math. 432, Amer. Math. Soc., 2007, 45–61. Zbl1137.57002
  22. [22] P. B. Gothen, Components of spaces of representations and stable triples, Topology40 (2001), 823–850. Zbl1066.14012MR1851565
  23. [23] O. Guichard, Composantes de Hitchin et représentations hyperconvexes de groupes de surface, preprint, to appear in J. Diff. Geom., 2005. Zbl1223.57015
  24. [24] R. D. I. Gulliver, R. Osserman & H. L. Royden, A theory of branched immersions of surfaces, Amer. J. Math.95 (1973), 750–812. Zbl0295.53002
  25. [25] N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc.55 (1987), 59–126. Zbl0634.53045MR887284
  26. [26] N. J. Hitchin, Lie groups and Teichmüller space, Topology31 (1992), 449–473. Zbl0769.32008MR1174252
  27. [27] F. Labourie, Existence d’applications harmoniques tordues à valeurs dans les variétés à courbure négative, Proc. Amer. Math. Soc.111 (1991), 877–882. Zbl0783.58016MR1049845
  28. [28] F. Labourie, ℝℙ 2 -structures et différentielles cubiques holomorphes, in GARC Conference in Differential Geometry, Seoul National University, 1997. 
  29. [29] F. Labourie, Cross ratios, surface groups, S L ( n , ) and diffeomorphisms of the circle, preprint arXiv:math.DG/0512070, to appear in Inst. Hautes Études Sci. Publ. Math., 2005. Zbl1203.30044MR2373231
  30. [30] F. Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math.165 (2006), 51–114. Zbl1103.32007MR2221137
  31. [31] F. Labourie, Flat projective structures on surfaces and cubic holomorphic differentials, preprint arXiv:math.DG/0611250, to appear in Pure Appl. Math. Q., 2006. Zbl1158.32006MR2402597
  32. [32] F. Labourie & G. McShane, Cross ratios and identities for higher Teichmüller-Thurston theory, preprint arXiv:math.DG/0611245, 2006. Zbl1182.30075
  33. [33] F. Ledrappier, Structure au bord des variétés à courbure négative, in Séminaire de Théorie Spectrale et Géométrie, No. 13, Année 1994–1995, Sémin. Théor. Spectr. Géom. 13, Univ. Grenoble I, 1995, 97–122. Zbl0931.53005MR1715960
  34. [34] J. C. Loftin, Affine spheres and convex ℝℙ n -manifolds, Amer. J. Math.123 (2001), 255–274. Zbl0997.53010MR1828223
  35. [35] C. T. McMullen, Teichmüller theory notes, http://www.math.harvard.edu/~ctm/home/text/class/harvard/275/05/html/home/course/course.pdf, 2006. 
  36. [36] J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv.32 (1958), 215–223. Zbl0196.25101MR95518
  37. [37] J.-P. Otal, Sur la géometrie symplectique de l’espace des géodésiques d’une variété à courbure négative, Rev. Mat. Iberoamericana8 (1992), 441–456. Zbl0777.53042MR1202417
  38. [38] J. Sacks & K. Uhlenbeck, The existence of minimal immersions of 2 -spheres, Ann. of Math.113 (1981), 1–24. Zbl0462.58014
  39. [39] J. Sacks & K. Uhlenbeck, Minimal immersions of closed Riemann surfaces, Trans. Amer. Math. Soc.271 (1982), 639–652. Zbl0527.58008
  40. [40] R. Schoen & S. T. Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math.110 (1979), 127–142. Zbl0431.53051
  41. [41] D. Toledo, Harmonic maps from surfaces to certain Kähler manifolds, Math. Scand.45 (1979), 13–26. Zbl0435.58008MR567429
  42. [42] D. Toledo, Representations of surface groups in complex hyperbolic space, J. Differential Geom.29 (1989), 125–133. Zbl0676.57012MR978081
  43. [43] V. G. Turaev, A cocycle of the symplectic first Chern class and Maslov indices, Funktsional. Anal. i Prilozhen.18 (1984), 43–48. Zbl0556.55012MR739088
  44. [44] A. Wienhard, Bounded cohomology and geometry, Thèse, Universität Bonn, 2004. Zbl1084.32013MR2205508
  45. [45] E. Z. Xia, The moduli of flat U ( p , 1 ) structures on Riemann surfaces, Geom. Dedicata 97 (2003), 33–43, Special volume dedicated to the memory of Hanna Miriam Sandler (1960–1999). Zbl1050.14022MR2003688

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.