Cross ratios, Anosov representations and the energy functional on Teichmüller space
Annales scientifiques de l'École Normale Supérieure (2008)
- Volume: 41, Issue: 3, page 439-471
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topLabourie, François. "Cross ratios, Anosov representations and the energy functional on Teichmüller space." Annales scientifiques de l'École Normale Supérieure 41.3 (2008): 439-471. <http://eudml.org/doc/272110>.
@article{Labourie2008,
abstract = {We study two classes of linear representations of a surface group: Hitchin and maximal symplectic representations. We relate them to cross ratios and thus deduce that they are displacing which means that their translation lengths are roughly controlled by the translations lengths on the Cayley graph. As a consequence, we show that the mapping class group acts properly on the space of representations and that the energy functional associated to such a representation is proper. This implies the existence of minimal surfaces in the quotient of the associated symmetric spaces, a fact which leads to two consequences: a rigidity result for maximal symplectic representations and a partial result concerning a purely holomorphic description of the Hichin component.},
author = {Labourie, François},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Hitchin components; energy; cross ratio; Toledo invariant; harmonic mappings; minimal surfaces},
language = {eng},
number = {3},
pages = {439-471},
publisher = {Société mathématique de France},
title = {Cross ratios, Anosov representations and the energy functional on Teichmüller space},
url = {http://eudml.org/doc/272110},
volume = {41},
year = {2008},
}
TY - JOUR
AU - Labourie, François
TI - Cross ratios, Anosov representations and the energy functional on Teichmüller space
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 3
SP - 439
EP - 471
AB - We study two classes of linear representations of a surface group: Hitchin and maximal symplectic representations. We relate them to cross ratios and thus deduce that they are displacing which means that their translation lengths are roughly controlled by the translations lengths on the Cayley graph. As a consequence, we show that the mapping class group acts properly on the space of representations and that the energy functional associated to such a representation is proper. This implies the existence of minimal surfaces in the quotient of the associated symmetric spaces, a fact which leads to two consequences: a rigidity result for maximal symplectic representations and a partial result concerning a purely holomorphic description of the Hichin component.
LA - eng
KW - Hitchin components; energy; cross ratio; Toledo invariant; harmonic mappings; minimal surfaces
UR - http://eudml.org/doc/272110
ER -
References
top- [1] F. Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math.92 (1988), 139–162. Zbl0653.32022MR931208
- [2] R. Bowen, The equidistribution of closed geodesics, Amer. J. Math.94 (1972), 413–423. Zbl0249.53033MR315742
- [3] S. B. Bradlow, O. García-Prada & P. B. Gothen, Surface group representations and -Higgs bundles, J. Differential Geom.64 (2003), 111–170. Zbl1070.53054
- [4] S. B. Bradlow, O. García-Prada & P. B. Gothen, Moduli spaces of holomorphic triples over compact Riemann surfaces, Math. Ann.328 (2004), 299–351. Zbl1041.32008
- [5] S. B. Bradlow, O. García-Prada & P. B. Gothen, Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces, Geom. Dedicata122 (2006), 185–213. Zbl1132.14029
- [6] M. Burger & A. Iozzi, Bounded Kähler class rigidity of actions on Hermitian symmetric spaces, Ann. Sci. École Norm. Sup.37 (2004), 77–103. Zbl1061.32016
- [7] M. Burger, A. Iozzi, F. Labourie & A. Wienhard, Maximal representations of surface groups: symplectic Anosov structures, Pure Appl. Math. Q.1 (2005), 543–590. Zbl1157.53025
- [8] M. Burger, A. Iozzi & A. Wienhard, Surface group representations with maximal Toledo invariant, C. R. Math. Acad. Sci. Paris336 (2003), 387–390. Zbl1035.32013
- [9] M. Burger, A. Iozzi & A. Wienhard, Hermitian symmetric spaces and Kähler rigidity, preprint, 2006. Zbl1138.32012
- [10] S. Choi & W. M. Goldman, Convex real projective structures on closed surfaces are closed, Proc. Amer. Math. Soc.118 (1993), 657–661. Zbl0810.57005
- [11] K. Corlette, Flat -bundles with canonical metrics, J. Differential Geom.28 (1988), 361–382. Zbl0676.58007MR965220
- [12] C. Croke & A. Fathi, An inequality between energy and intersection, Bull. London Math. Soc.22 (1990), 489–494. Zbl0719.53020
- [13] T. Delzant, O. Guichard, F. Labourie & S. Mozes, Well displacing representations and orbit maps, preprint, 2007. Zbl1281.20047
- [14] A. Domic & D. Toledo, The Gromov norm of the Kähler class of symmetric domains, Math. Ann.276 (1987), 425–432. Zbl0595.53061
- [15] S. K. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc.55 (1987), 127–131. Zbl0634.53046MR887285
- [16] V. Fock & A. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci.103 (2006), 1–211. Zbl1099.14025
- [17] O. García-Prada I. Mundet i Riera, Representations of the fundamental group of a closed oriented surface in , Topology 43 (2004), 831–855. Zbl1070.14014
- [18] W. M. Goldman, Discontinuous group and the Euler class, Thèse, University of Berkeley, California, 1980. MR2630832
- [19] W. M. Goldman, Topological components of spaces of representations, Invent. Math.93 (1988), 557–607. Zbl0655.57019MR952283
- [20] W. M. Goldman, Convex real projective structures on compact surfaces, J. Differential Geom.31 (1990), 791–845. Zbl0711.53033MR1053346
- [21] W. M. Goldman & R. A. Wentworth, Energy of twisted harmonic maps of Riemann surfaces, in In the tradition of Ahlfors-Bers. IV, Contemp. Math. 432, Amer. Math. Soc., 2007, 45–61. Zbl1137.57002
- [22] P. B. Gothen, Components of spaces of representations and stable triples, Topology40 (2001), 823–850. Zbl1066.14012MR1851565
- [23] O. Guichard, Composantes de Hitchin et représentations hyperconvexes de groupes de surface, preprint, to appear in J. Diff. Geom., 2005. Zbl1223.57015
- [24] R. D. I. Gulliver, R. Osserman & H. L. Royden, A theory of branched immersions of surfaces, Amer. J. Math.95 (1973), 750–812. Zbl0295.53002
- [25] N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc.55 (1987), 59–126. Zbl0634.53045MR887284
- [26] N. J. Hitchin, Lie groups and Teichmüller space, Topology31 (1992), 449–473. Zbl0769.32008MR1174252
- [27] F. Labourie, Existence d’applications harmoniques tordues à valeurs dans les variétés à courbure négative, Proc. Amer. Math. Soc.111 (1991), 877–882. Zbl0783.58016MR1049845
- [28] F. Labourie, -structures et différentielles cubiques holomorphes, in GARC Conference in Differential Geometry, Seoul National University, 1997.
- [29] F. Labourie, Cross ratios, surface groups, and diffeomorphisms of the circle, preprint arXiv:math.DG/0512070, to appear in Inst. Hautes Études Sci. Publ. Math., 2005. Zbl1203.30044MR2373231
- [30] F. Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math.165 (2006), 51–114. Zbl1103.32007MR2221137
- [31] F. Labourie, Flat projective structures on surfaces and cubic holomorphic differentials, preprint arXiv:math.DG/0611250, to appear in Pure Appl. Math. Q., 2006. Zbl1158.32006MR2402597
- [32] F. Labourie & G. McShane, Cross ratios and identities for higher Teichmüller-Thurston theory, preprint arXiv:math.DG/0611245, 2006. Zbl1182.30075
- [33] F. Ledrappier, Structure au bord des variétés à courbure négative, in Séminaire de Théorie Spectrale et Géométrie, No. 13, Année 1994–1995, Sémin. Théor. Spectr. Géom. 13, Univ. Grenoble I, 1995, 97–122. Zbl0931.53005MR1715960
- [34] J. C. Loftin, Affine spheres and convex -manifolds, Amer. J. Math.123 (2001), 255–274. Zbl0997.53010MR1828223
- [35] C. T. McMullen, Teichmüller theory notes, http://www.math.harvard.edu/~ctm/home/text/class/harvard/275/05/html/home/course/course.pdf, 2006.
- [36] J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv.32 (1958), 215–223. Zbl0196.25101MR95518
- [37] J.-P. Otal, Sur la géometrie symplectique de l’espace des géodésiques d’une variété à courbure négative, Rev. Mat. Iberoamericana8 (1992), 441–456. Zbl0777.53042MR1202417
- [38] J. Sacks & K. Uhlenbeck, The existence of minimal immersions of -spheres, Ann. of Math.113 (1981), 1–24. Zbl0462.58014
- [39] J. Sacks & K. Uhlenbeck, Minimal immersions of closed Riemann surfaces, Trans. Amer. Math. Soc.271 (1982), 639–652. Zbl0527.58008
- [40] R. Schoen & S. T. Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math.110 (1979), 127–142. Zbl0431.53051
- [41] D. Toledo, Harmonic maps from surfaces to certain Kähler manifolds, Math. Scand.45 (1979), 13–26. Zbl0435.58008MR567429
- [42] D. Toledo, Representations of surface groups in complex hyperbolic space, J. Differential Geom.29 (1989), 125–133. Zbl0676.57012MR978081
- [43] V. G. Turaev, A cocycle of the symplectic first Chern class and Maslov indices, Funktsional. Anal. i Prilozhen.18 (1984), 43–48. Zbl0556.55012MR739088
- [44] A. Wienhard, Bounded cohomology and geometry, Thèse, Universität Bonn, 2004. Zbl1084.32013MR2205508
- [45] E. Z. Xia, The moduli of flat structures on Riemann surfaces, Geom. Dedicata 97 (2003), 33–43, Special volume dedicated to the memory of Hanna Miriam Sandler (1960–1999). Zbl1050.14022MR2003688
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.