Cross ratios, Anosov representations and the energy functional on Teichmüller space
Annales scientifiques de l'École Normale Supérieure (2008)
- Volume: 41, Issue: 3, page 439-471
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] F. Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math.92 (1988), 139–162. Zbl0653.32022MR931208
- [2] R. Bowen, The equidistribution of closed geodesics, Amer. J. Math.94 (1972), 413–423. Zbl0249.53033MR315742
- [3] S. B. Bradlow, O. García-Prada & P. B. Gothen, Surface group representations and -Higgs bundles, J. Differential Geom.64 (2003), 111–170. Zbl1070.53054
- [4] S. B. Bradlow, O. García-Prada & P. B. Gothen, Moduli spaces of holomorphic triples over compact Riemann surfaces, Math. Ann.328 (2004), 299–351. Zbl1041.32008
- [5] S. B. Bradlow, O. García-Prada & P. B. Gothen, Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces, Geom. Dedicata122 (2006), 185–213. Zbl1132.14029
- [6] M. Burger & A. Iozzi, Bounded Kähler class rigidity of actions on Hermitian symmetric spaces, Ann. Sci. École Norm. Sup.37 (2004), 77–103. Zbl1061.32016
- [7] M. Burger, A. Iozzi, F. Labourie & A. Wienhard, Maximal representations of surface groups: symplectic Anosov structures, Pure Appl. Math. Q.1 (2005), 543–590. Zbl1157.53025
- [8] M. Burger, A. Iozzi & A. Wienhard, Surface group representations with maximal Toledo invariant, C. R. Math. Acad. Sci. Paris336 (2003), 387–390. Zbl1035.32013
- [9] M. Burger, A. Iozzi & A. Wienhard, Hermitian symmetric spaces and Kähler rigidity, preprint, 2006. Zbl1138.32012
- [10] S. Choi & W. M. Goldman, Convex real projective structures on closed surfaces are closed, Proc. Amer. Math. Soc.118 (1993), 657–661. Zbl0810.57005
- [11] K. Corlette, Flat -bundles with canonical metrics, J. Differential Geom.28 (1988), 361–382. Zbl0676.58007MR965220
- [12] C. Croke & A. Fathi, An inequality between energy and intersection, Bull. London Math. Soc.22 (1990), 489–494. Zbl0719.53020
- [13] T. Delzant, O. Guichard, F. Labourie & S. Mozes, Well displacing representations and orbit maps, preprint, 2007. Zbl1281.20047
- [14] A. Domic & D. Toledo, The Gromov norm of the Kähler class of symmetric domains, Math. Ann.276 (1987), 425–432. Zbl0595.53061
- [15] S. K. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc.55 (1987), 127–131. Zbl0634.53046MR887285
- [16] V. Fock & A. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci.103 (2006), 1–211. Zbl1099.14025
- [17] O. García-Prada I. Mundet i Riera, Representations of the fundamental group of a closed oriented surface in , Topology 43 (2004), 831–855. Zbl1070.14014
- [18] W. M. Goldman, Discontinuous group and the Euler class, Thèse, University of Berkeley, California, 1980. MR2630832
- [19] W. M. Goldman, Topological components of spaces of representations, Invent. Math.93 (1988), 557–607. Zbl0655.57019MR952283
- [20] W. M. Goldman, Convex real projective structures on compact surfaces, J. Differential Geom.31 (1990), 791–845. Zbl0711.53033MR1053346
- [21] W. M. Goldman & R. A. Wentworth, Energy of twisted harmonic maps of Riemann surfaces, in In the tradition of Ahlfors-Bers. IV, Contemp. Math. 432, Amer. Math. Soc., 2007, 45–61. Zbl1137.57002
- [22] P. B. Gothen, Components of spaces of representations and stable triples, Topology40 (2001), 823–850. Zbl1066.14012MR1851565
- [23] O. Guichard, Composantes de Hitchin et représentations hyperconvexes de groupes de surface, preprint, to appear in J. Diff. Geom., 2005. Zbl1223.57015
- [24] R. D. I. Gulliver, R. Osserman & H. L. Royden, A theory of branched immersions of surfaces, Amer. J. Math.95 (1973), 750–812. Zbl0295.53002
- [25] N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc.55 (1987), 59–126. Zbl0634.53045MR887284
- [26] N. J. Hitchin, Lie groups and Teichmüller space, Topology31 (1992), 449–473. Zbl0769.32008MR1174252
- [27] F. Labourie, Existence d’applications harmoniques tordues à valeurs dans les variétés à courbure négative, Proc. Amer. Math. Soc.111 (1991), 877–882. Zbl0783.58016MR1049845
- [28] F. Labourie, -structures et différentielles cubiques holomorphes, in GARC Conference in Differential Geometry, Seoul National University, 1997.
- [29] F. Labourie, Cross ratios, surface groups, and diffeomorphisms of the circle, preprint arXiv:math.DG/0512070, to appear in Inst. Hautes Études Sci. Publ. Math., 2005. Zbl1203.30044MR2373231
- [30] F. Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math.165 (2006), 51–114. Zbl1103.32007MR2221137
- [31] F. Labourie, Flat projective structures on surfaces and cubic holomorphic differentials, preprint arXiv:math.DG/0611250, to appear in Pure Appl. Math. Q., 2006. Zbl1158.32006MR2402597
- [32] F. Labourie & G. McShane, Cross ratios and identities for higher Teichmüller-Thurston theory, preprint arXiv:math.DG/0611245, 2006. Zbl1182.30075
- [33] F. Ledrappier, Structure au bord des variétés à courbure négative, in Séminaire de Théorie Spectrale et Géométrie, No. 13, Année 1994–1995, Sémin. Théor. Spectr. Géom. 13, Univ. Grenoble I, 1995, 97–122. Zbl0931.53005MR1715960
- [34] J. C. Loftin, Affine spheres and convex -manifolds, Amer. J. Math.123 (2001), 255–274. Zbl0997.53010MR1828223
- [35] C. T. McMullen, Teichmüller theory notes, http://www.math.harvard.edu/~ctm/home/text/class/harvard/275/05/html/home/course/course.pdf, 2006.
- [36] J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv.32 (1958), 215–223. Zbl0196.25101MR95518
- [37] J.-P. Otal, Sur la géometrie symplectique de l’espace des géodésiques d’une variété à courbure négative, Rev. Mat. Iberoamericana8 (1992), 441–456. Zbl0777.53042MR1202417
- [38] J. Sacks & K. Uhlenbeck, The existence of minimal immersions of -spheres, Ann. of Math.113 (1981), 1–24. Zbl0462.58014
- [39] J. Sacks & K. Uhlenbeck, Minimal immersions of closed Riemann surfaces, Trans. Amer. Math. Soc.271 (1982), 639–652. Zbl0527.58008
- [40] R. Schoen & S. T. Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math.110 (1979), 127–142. Zbl0431.53051
- [41] D. Toledo, Harmonic maps from surfaces to certain Kähler manifolds, Math. Scand.45 (1979), 13–26. Zbl0435.58008MR567429
- [42] D. Toledo, Representations of surface groups in complex hyperbolic space, J. Differential Geom.29 (1989), 125–133. Zbl0676.57012MR978081
- [43] V. G. Turaev, A cocycle of the symplectic first Chern class and Maslov indices, Funktsional. Anal. i Prilozhen.18 (1984), 43–48. Zbl0556.55012MR739088
- [44] A. Wienhard, Bounded cohomology and geometry, Thèse, Universität Bonn, 2004. Zbl1084.32013MR2205508
- [45] E. Z. Xia, The moduli of flat structures on Riemann surfaces, Geom. Dedicata 97 (2003), 33–43, Special volume dedicated to the memory of Hanna Miriam Sandler (1960–1999). Zbl1050.14022MR2003688