Laplace asymptotics for generalized K.P.P. equation

Jean-Philippe Rouques

ESAIM: Probability and Statistics (1997)

  • Volume: 1, page 225-258
  • ISSN: 1292-8100

How to cite

top

Rouques, Jean-Philippe. "Laplace asymptotics for generalized K.P.P. equation." ESAIM: Probability and Statistics 1 (1997): 225-258. <http://eudml.org/doc/104234>.

@article{Rouques1997,
author = {Rouques, Jean-Philippe},
journal = {ESAIM: Probability and Statistics},
keywords = {nonlinear diffusion; probabilistic formulation; Feynman-Kac formula},
language = {eng},
pages = {225-258},
publisher = {EDP Sciences},
title = {Laplace asymptotics for generalized K.P.P. equation},
url = {http://eudml.org/doc/104234},
volume = {1},
year = {1997},
}

TY - JOUR
AU - Rouques, Jean-Philippe
TI - Laplace asymptotics for generalized K.P.P. equation
JO - ESAIM: Probability and Statistics
PY - 1997
PB - EDP Sciences
VL - 1
SP - 225
EP - 258
LA - eng
KW - nonlinear diffusion; probabilistic formulation; Feynman-Kac formula
UR - http://eudml.org/doc/104234
ER -

References

top
  1. ATHREYA, K. and NEY, P. ( 1972). Branching processes, Berlin Heidelberg New York: Springer. Zbl0259.60002MR373040
  2. AZENCOTT, R. ( 1980-1981), Formule de Taylor stochastique et développements asymptotiques d'intégrales de Feynman, séminaire de probabilités XVI, Lecture Notes in Maths 921 237-284. Zbl0484.60064MR658728
  3. AZENCOTT, R. ( 1985), Petites perturbations aléatoires des systèmes dynamiques: développements asymptotiques, Bulletin des sc. math, 2ème série, 109 253-308. Zbl0591.60023MR822827
  4. BEN AROUS, G. ( 1988), Méthodes de Laplace et de la phase stationnaire sur l'espace de Wiener, Stochastics 25 125-153. Zbl0666.60026MR999365
  5. BEN AROUS, G. and ROUAULT, A. ( 1993), Laplace asymptotics for reaction-diffusion equations, Probab. Th. Rel. Fields 97 259-285. Zbl0794.60063MR1240726
  6. BRAMSON, M. ( 1982), The Kolmogorov non-linear diffusion equation, Lecture at Paris VI university. 
  7. BARLES, G. and SOUGANIDIS, P.E. ( 1994). A remark on the asymptotic behavior of the solution of the KPP equation, C. R. Acad. Sci. Paris 319, Série 1 679-684. Zbl0807.60076MR1300069
  8. CHAUVIN, B. and ROUAULT, A. ( 1988), KPP equation and supercritical branching brownian motion in the subcritical speed area: application to spatial trees, Probab. Th. Rel. Fields 80 299-314. Zbl0653.60077MR968823
  9. DACUNHA-CASTELLE, D.and FLORENS-ZMIROU, D. ( 1986), Estimation of the coefficients of a diffusion from discrete observations. Stochastics 19 263-284. Zbl0626.62085MR872464
  10. DOSS, H. ( 1980), Quelques formules asymptotiques pour les petites perturbations de systèmes dynamiques, Ann. IHP X V I n° 1 17-28. Zbl0432.60073MR575173
  11. FITZSIMMONS, P., PITMAN, J. and YOR, M. ( 1992), Markovian bridges: construction, Palm interpretation, and splicing, Cinlar, E. (ed) et al., Seminar on stochastic processes held at the univ. of Washington, DC, USA; prog. prohah. 33 101-134. Zbl0844.60054MR1278079
  12. FREIDLIN, M. ( 1985), Functional integration and partial differential equation, Princeton univ. press. Zbl0568.60057MR833742
  13. FREIDLIN, M. ( 1990), Semi-linear pde's and limit theorems for large deviations; école d'été de Saint-Flour. Lecture Notes in Maths 1527. Zbl0777.60025MR1229518
  14. FRIEDMAN, A. ( 1964), Partial differential equations of paraholic type, Prent ice Hall. Englewood Cliffs, N.J. Zbl0144.34903MR181836
  15. KOLMOGOROV, A., PETROVSKII, I. and PISCUNOV, N. ( 1937), Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Moscow univ. bull. math. 1 1-25. Zbl0018.32106
  16. KUO, H.H. ( 1975), Gaussian measure in Banach spaces, Lect. Notes in Math. 463. Zbl0306.28010MR461643
  17. NUALART, D. and PARDOUX, E. ( 1988), Stochastic calculus with anticipating integrands, Probab. Th. Rel. Fields 78 535-581. Zbl0629.60061MR950346
  18. REVUZ D. and YOR M. ( 1991), Continuous martingales and Brownian motion, Springer-Verlag Berlin Heidelberg. Zbl0731.60002MR1083357
  19. UCHIYAMA, K. ( 1978), The behaviour of solutions of some non-linear diffusion equations for large time, Journ. math. Kyoto univ. 18 453-508. Zbl0408.35053MR509494

NotesEmbed ?

top

You must be logged in to post comments.