Page 1 Next

Displaying 1 – 20 of 433

Showing per page

A Finite Element Model Based on Discontinuous Galerkin Methods on Moving Grids for Vertebrate Limb Pattern Formation

J. Zhu, Y.-T. Zhang, S. A. Newman, M. S. Alber (2009)

Mathematical Modelling of Natural Phenomena

Skeletal patterning in the vertebrate limb, i.e., the spatiotemporal regulation of cartilage differentiation (chondrogenesis) during embryogenesis and regeneration, is one of the best studied examples of a multicellular developmental process. Recently [Alber et al., The morphostatic limit for a model of skeletal pattern formation in the vertebrate limb, Bulletin of Mathematical Biology, 2008, v70, pp. 460-483], a simplified two-equation reaction-diffusion system was developed to describe the interaction...

A Hybrid Model Describing Different Morphologies of Tumor Invasion Fronts

M. Scianna, L. Preziosi (2012)

Mathematical Modelling of Natural Phenomena

The invasive capability is fundamental in determining the malignancy of a solid tumor. Revealing biomedical strategies that are able to partially decrease cancer invasiveness is therefore an important approach in the treatment of the disease and has given rise to multiple in vitro and in silico models. We here develop a hybrid computational framework, whose aim is to characterize the effects of the different cellular and subcellular mechanisms involved...

A linear scheme to approximate nonlinear cross-diffusion systems*

Hideki Murakawa (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper proposes a linear discrete-time scheme for general nonlinear cross-diffusion systems. The scheme can be regarded as an extension of a linear scheme based on the nonlinear Chernoff formula for the degenerate parabolic equations, which proposed by Berger et al. [RAIRO Anal. Numer.13 (1979) 297–312]. We analyze stability and convergence of the linear scheme. To this end, we apply the theory of reaction-diffusion system approximation. After discretizing the scheme in space, we obtain a versatile,...

A linear scheme to approximate nonlinear cross-diffusion systems*

Hideki Murakawa (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper proposes a linear discrete-time scheme for general nonlinear cross-diffusion systems. The scheme can be regarded as an extension of a linear scheme based on the nonlinear Chernoff formula for the degenerate parabolic equations, which proposed by Berger et al. [RAIRO Anal. Numer.13 (1979) 297–312]. We analyze stability and convergence of the linear scheme. To this end, we apply the theory of reaction-diffusion system approximation. After discretizing the scheme in space, we obtain a versatile,...

A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations

Gabriel R. Barrenechea, Volker John, Petr Knobloch (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

An extension of the local projection stabilization (LPS) finite element method for convection-diffusion-reaction equations is presented and analyzed, both in the steady-state and the transient setting. In addition to the standard LPS method, a nonlinear crosswind diffusion term is introduced that accounts for the reduction of spurious oscillations. The existence of a solution can be proved and, depending on the choice of the stabilization parameter, also its uniqueness. Error estimates are derived...

A mechanochemical model of angiogenesis and vasculogenesis

Daphne Manoussaki (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Vasculogenesis and angiogenesis are two different mechanisms for blood vessel formation. Angiogenesis occurs when new vessels sprout from pre-existing vasculature in response to external chemical stimuli. Vasculogenesis occurs via the reorganization of randomly distributed cells into a blood vessel network. Experimental models of vasculogenesis have suggested that the cells exert traction forces onto the extracellular matrix and that these forces may play an important role in the network forming...

A mechanochemical model of angiogenesis and vasculogenesis

Daphne Manoussaki (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Vasculogenesis and angiogenesis are two different mechanisms for blood vessel formation. Angiogenesis occurs when new vessels sprout from pre-existing vasculature in response to external chemical stimuli. Vasculogenesis occurs via the reorganization of randomly distributed cells into a blood vessel network. Experimental models of vasculogenesis have suggested that the cells exert traction forces onto the extracellular matrix and that these forces may play an important role in the network forming...

Currently displaying 1 – 20 of 433

Page 1 Next