Rate of convergence of the Swendsen-Wang dynamics in image segmentation problems : a theoretical and experimental study
ESAIM: Probability and Statistics (1997)
- Volume: 1, page 259-284
- ISSN: 1292-8100
Access Full Article
topHow to cite
topGaudron, Isabelle. "Rate of convergence of the Swendsen-Wang dynamics in image segmentation problems : a theoretical and experimental study." ESAIM: Probability and Statistics 1 (1997): 259-284. <http://eudml.org/doc/104235>.
@article{Gaudron1997,
author = {Gaudron, Isabelle},
journal = {ESAIM: Probability and Statistics},
keywords = {Metropolis relaxation; Swendsen-Wang dynamics; image segmentation problems},
language = {eng},
pages = {259-284},
publisher = {EDP Sciences},
title = {Rate of convergence of the Swendsen-Wang dynamics in image segmentation problems : a theoretical and experimental study},
url = {http://eudml.org/doc/104235},
volume = {1},
year = {1997},
}
TY - JOUR
AU - Gaudron, Isabelle
TI - Rate of convergence of the Swendsen-Wang dynamics in image segmentation problems : a theoretical and experimental study
JO - ESAIM: Probability and Statistics
PY - 1997
PB - EDP Sciences
VL - 1
SP - 259
EP - 284
LA - eng
KW - Metropolis relaxation; Swendsen-Wang dynamics; image segmentation problems
UR - http://eudml.org/doc/104235
ER -
References
top- BESAG, J. and Green, P. J. ( 1993). Spatial statistics and bayesian computation. J. R. Statis. Soc. B 55 25-37. Zbl0800.62572MR1210422
- BESAG, J., GREEN, P. J., HIGDON, D. and MENGERSEN, K. ( 1995). Bayesian computation and stochastic systems. Statistical Science 10 3-66. Zbl0955.62552MR1349818
- DEUSCHEL, J.-D. and MAZZA, C. ( 1994). L2 convergence of time nonhomogeneous Markov processes: I. Spectral estimates. Ann. Appl. Prob. 4 1012-1056. Zbl0819.60063MR1304771
- DIACONIS, P. and STROOCK, D. ( 1991). Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Prob. 1 36-61. Zbl0731.60061MR1097463
- FREIDLIN, M. I. and WENTZELL, A. D. ( 1984). Random perturbations of dynamical systems, 260, Springer-Verlag. Zbl0522.60055MR722136
- GAUDRON, I. and TROUVÉ, A. ( 1996). Fluctuations of empirical means at low temperature for finite Markov chains with rare transitions in the general case. Preprint CMLA, Cachan, France. MR1633578
- GEMAN, D. ( 1990). Ch. Random fields and inverse problems in imaging. Lectures on Probability Theory and Statistics. XVIIIème École d'Eté de Probabilités de Saint-Flour, Lecture Notes in Mathematics, Springer-Verlag. Zbl0718.60119MR1100283
- GEMAN, D., GEMAN, S., and GRAFFIGNE, C. ( 1986). Locating texture and object boundaries, in Pattern Recognition Theory and Applications, Devijver ed., NATO ASI, Springer-Verlag, Heidelberg.
- GRAFFIGNE, C. ( 1987). Experiments in texture analysis and segmentation. PhD thesis, Brown University.
- GRAY, A. ( 1994). Simulating posterior Gibbs distributions: A comparison of the Swendsen-Wang and Gibbs sampler methods. Statistics and Computing A 189-201.
- HERLIN, I., NGUYEN, C., and GRAFFIGNE, C. ( 1992). Stochastic Segmentation of ultrasound images, in 11th IAPR International Conference on Pattern Recognition, IEEE Computer Society Press, 1 289-292.
- HURN, M. ( 1995). On the use of auxiliary variables in Markov chain Monte-Carlo methods, Tech. Rep. #95-07, Statistics Group at the University of Bath, School of Mathematical Sciences, University of Bath, Bath, BA2 7AY.
- HURN, M. and JENNISON, C. ( 1993). Multiple-site updates in maximum a posteriori and marginal posterior modes image estimation, in Advances in Applied Statistics: Statistics and Images, Mardia and Kanji eds., Oxford - Carfax, 155-186.
- MARTINELLI, F. ( 1992). Dynamical analysis of low-temperature Monte-Carlo cluster algorithms. J. Stat. Physics 66 1245-1276. Zbl0925.82181MR1156404
- MARTINELLI, F., OLIVIERI, E., and SCOPPOLA, E. ( 1991). On the Swendsen-Wang dynamics. I. Exponential convergence to equilibrium. J. Stat. Physics 62 117-133. Zbl0739.60097MR1105259
- MARTINELLI, F., OLIVIERI, E., and SCOPPOLA, E. ( 1991). On the Swendsen-Wang dynamics. II. Critical droplets and homogeneous nucleation at low temperature for the two-dimensional Ising models. J. Stat. Physics 62 117-133. Zbl0739.60097MR1105259
- SOKAL, A. D.( 1989). Monte-Carlo methods in statistical mechanics: Foundations and new algorithms. Cours de troisième cycle de la physique en Suisse Romande, Lausanne.
- SWENDSEN, R. H. and WANG, J. S. ( 1987). Nonuniversal critical dynamics in Monte-Carlo simulation. Physical Review Letters 58 86-88.
- WANG, J. ( 1994). Multiscale Markov fields: applications to the segmentation of textured images and film fusion, PhD thesis, Orsay University.
- WANG, J. ( 1997). Stochastic relaxation on partitions with connected components and its application to image segmentation. Preprint CMLA, Cachan, France.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.