Page 1 Next

Displaying 1 – 20 of 105

Showing per page

A note on spider walks

Christophe Gallesco, Sebastian Müller, Serguei Popov (2011)

ESAIM: Probability and Statistics

Spider walks are systems of interacting particles. The particles move independently as long as their movements do not violate some given rules describing the relative position of the particles; moves that violate the rules are not realized. The goal of this paper is to study qualitative properties, as recurrence, transience, ergodicity, and positive rate of escape of these Markov processes.

A note on spider walks

Christophe Gallesco, Sebastian Müller, Serguei Popov (2012)

ESAIM: Probability and Statistics

Spider walks are systems of interacting particles. The particles move independently as long as their movements do not violate some given rules describing the relative position of the particles; moves that violate the rules are not realized. The goal of this paper is to study qualitative properties, as recurrence, transience, ergodicity, and positive rate of escape of these Markov processes.

A stability theorem for elliptic Harnack inequalities

Richard F. Bass (2013)

Journal of the European Mathematical Society

We prove a stability theorem for the elliptic Harnack inequality: if two weighted graphs are equivalent, then the elliptic Harnack inequality holds for harmonic functions with respect to one of the graphs if and only if it holds for harmonic functions with respect to the other graph. As part of the proof, we give a characterization of the elliptic Harnack inequality.

Approximate evaluation of continuous review ( R , Q ) policies in two-echelon inventory systems with stochastic transportation times

Abdullah S. Karaman (2017)

Kybernetika

This paper considers a distribution inventory system that consists of a single warehouse and several retailers. Customer demand arrives at the retailers according to a continuous-time renewal process. Material flow between echelons is driven by reorder point/order quantity inventory control policies. Our objective in this setting is to calculate the long-run inventory, backorder and customer service levels. The challenge in this system is to characterize the demand arrival process at the warehouse....

Binomial-Poisson entropic inequalities and the M/M/∞ queue

Djalil Chafaï (2006)

ESAIM: Probability and Statistics

This article provides entropic inequalities for binomial-Poisson distributions, derived from the two point space. They appear as local inequalities of the M/M/∞ queue. They describe in particular the exponential dissipation of Φ-entropies along this process. This simple queueing process appears as a model of “constant curvature”, and plays for the simple Poisson process the role played by the Ornstein-Uhlenbeck process for Brownian Motion. Some of the inequalities are recovered by semi-group ...

Currently displaying 1 – 20 of 105

Page 1 Next