Diffusions with a nonlinear irregular drift coefficient and probabilistic interpretation of generalized burgers' equations

B. Jourdain

ESAIM: Probability and Statistics (1997)

  • Volume: 1, page 339-355
  • ISSN: 1292-8100

How to cite

top

Jourdain, B.. "Diffusions with a nonlinear irregular drift coefficient and probabilistic interpretation of generalized burgers' equations." ESAIM: Probability and Statistics 1 (1997): 339-355. <http://eudml.org/doc/104238>.

@article{Jourdain1997,
author = {Jourdain, B.},
journal = {ESAIM: Probability and Statistics},
keywords = {martingale problems; identity diffusion matrix; Lipschitz continuous matrices; Burgers' equation},
language = {eng},
pages = {339-355},
publisher = {EDP Sciences},
title = {Diffusions with a nonlinear irregular drift coefficient and probabilistic interpretation of generalized burgers' equations},
url = {http://eudml.org/doc/104238},
volume = {1},
year = {1997},
}

TY - JOUR
AU - Jourdain, B.
TI - Diffusions with a nonlinear irregular drift coefficient and probabilistic interpretation of generalized burgers' equations
JO - ESAIM: Probability and Statistics
PY - 1997
PB - EDP Sciences
VL - 1
SP - 339
EP - 355
LA - eng
KW - martingale problems; identity diffusion matrix; Lipschitz continuous matrices; Burgers' equation
UR - http://eudml.org/doc/104238
ER -

References

top
  1. BOSSY, M. and TALAY, D. ( 1996). Convergence Rate for the Approximation of the limit law of weakly interact ing particles: Application to the Burgers Equation. Ann. Appl. Prob. 6 818-861. Zbl0860.60038MR1410117
  2. COLE, J. D. ( 1951). On a quasi-linear parabolie equation occuring in aerodynamics. Quart. Appl. Math. 9 225-236. Zbl0043.09902MR42889
  3. FRIEDMAN, A. ( 1975). Stochastic Differential Equations and Applications. Academic Press. Zbl0323.60056
  4. GRAHAM, C. ( 1992). Nonlinear diffusions with jumps. Ann. Inst. Henri Poincaré. 28 393-402. Zbl0756.60098MR1183993
  5. HOPF, E. ( 1950). The partial differential equation ut + uux = µuxx. Comm. Pure Appl. Math. 3 201-230. Zbl0039.10403MR47234
  6. KARATZAS, I. and SHREVE, S. E. ( 1988). Brownian Motion and Stochastic Calculus. Springer-Verlag. Zbl0638.60065MR917065
  7. MÉLÉARD, S. and ROELLY-COPPOLETTA, S. ( 1987). A propagation of chaos result for a system of particles with moderate interaction. Stochastic Processes and their Application. 26 317-332. Zbl0633.60108MR923112
  8. MEYER, P. A. ( 1966). Probabilités et Potentiel. Hermann. Zbl0138.10402MR205287
  9. OELSCHLÄGER, K. ( 1985). A law of large numbers for moderately interacting diffusion processes. Z. Wahrsch. Verw, Geb. 69 279-322. Zbl0549.60071MR779460
  10. SZNITMAN, A. S. ( 1991). Topics in propagation of chaos. École d'été de probabilités de Saint-Flour XIX - 1989. Lect. Notes in Math, 1464. Springer-Verlag. Zbl0732.60114MR1108185

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.