Nonlinear diffusion with jumps

Carl Graham

Annales de l'I.H.P. Probabilités et statistiques (1992)

  • Volume: 28, Issue: 3, page 393-402
  • ISSN: 0246-0203

How to cite

top

Graham, Carl. "Nonlinear diffusion with jumps." Annales de l'I.H.P. Probabilités et statistiques 28.3 (1992): 393-402. <http://eudml.org/doc/77439>.

@article{Graham1992,
author = {Graham, Carl},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {interacting particle systems; propagation of chaos; McKean-Vlasov diffusions with jumps; nonlinear martingale problems; coupling},
language = {eng},
number = {3},
pages = {393-402},
publisher = {Gauthier-Villars},
title = {Nonlinear diffusion with jumps},
url = {http://eudml.org/doc/77439},
volume = {28},
year = {1992},
}

TY - JOUR
AU - Graham, Carl
TI - Nonlinear diffusion with jumps
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1992
PB - Gauthier-Villars
VL - 28
IS - 3
SP - 393
EP - 402
LA - eng
KW - interacting particle systems; propagation of chaos; McKean-Vlasov diffusions with jumps; nonlinear martingale problems; coupling
UR - http://eudml.org/doc/77439
ER -

References

top
  1. [1] N. El-Karoui and J.-P. Lepeltier, Représentation des processus ponctuels multi-variés à l'aide d'un processus de Poisson, Z. Wahrsch. Verw. Geb., Vol. 39, 1977, pp. 111-133. Zbl0359.60065MR448546
  2. [2] A. Gerardi and M. Romiti, A Discrete Non-Linear Markov Model for a Population of Interacting Cells, Stoch. Proc. Appl., Vol. 37, 1991, pp. 33-43. Zbl0725.60090MR1091692
  3. [3] C. Graham, Nonlinear Limit for a System of Diffusing Particles which Alternate between two states, Appl. Math. Optim., Vol. 22, 1990, pp. 75-90. Zbl0707.60072MR1046696
  4. [4] C. Graham, McKean-Vlasov Ito-Shorohod Equations, and Nonlinear Diffusions with Discrete Jump Sets, Stoch. Proc. Appl., Vol. 40, 1992, pp. 69-82. Zbl0749.60096MR1145460
  5. [5] C. Graham and M. Métivier, System of Interacting Particles and Nonlinear Diffusion in a Domain with Sticky Boundary, Probab. Theory Rel. Fields., Vol. 82, 1989, pp. 225-240. Zbl0687.60087MR998932
  6. [6] H.P. Mckean, Fluctuations in the Kinetic Theory of Gases, Comm. Pure Appl. Math., Vol. 28, 1975, pp. 435-455. MR395662
  7. [7] D. Pollard, Convergence of Stochastic Processes, Springer, New York, 1984. Zbl0544.60045MR762984
  8. [8] T. Shiga and H. Tanaka, Central Limit Theorem for a System of Markovian Particules with Mean-Field Interaction, Z. Wahrsch. Verw. Geb., Vol. 69, 1984, pp. 439-459. Zbl0607.60095MR787607
  9. [9] A.-S. Sznitman, Equations de type de Boltzmann, spatialement homogènes, Z. Wahrsch. Verw. Geb., Vol. 66, 1984, pp. 559-592. Zbl0553.60069MR753814
  10. [10] A.-S. Sznitman, Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated, J. Funct. Anal., Vol. 56, 3, 1984, pp. 311-336. Zbl0547.60080MR743844
  11. [11] H. Tanaka, Probabilistic Treatment of the Boltzmann Equation for Maxwellian Molecules, Z. Wahrsch. Verw. Geb., Vol. 46, 1978, pp. 67-105. Zbl0389.60079MR512334
  12. [12] V.M. Zolotarev, Probability Metrics, Theory Prob. Appl., Vol. 28, 2, 1983, pp. 278-302. Zbl0533.60025MR700210

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.