Finsler Conformal Lichnerowicz-Obata conjecture
V. S. Matveev[1]; H.-B. Rademacher[2]; M. Troyanov[3]; A. Zeghib[4]
- [1] Mathematisches Institut, Friedrich-Schiller Universität Jena 07737 Jena (Germany)
- [2] Mathematisches Institut, Universität Leipzig, 04081 Leipzig (Germany)
- [3] Section de Mathématiques, École Polytechnique Fédérale de Lausanne 1015 Lausanne (Switzerland)
- [4] UMPA, ENS-Lyon, 46, allée d’Italie, 69364 Lyon Cedex 07 (France)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 3, page 937-949
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMatveev, V. S., et al. "Finsler Conformal Lichnerowicz-Obata conjecture." Annales de l’institut Fourier 59.3 (2009): 937-949. <http://eudml.org/doc/10424>.
@article{Matveev2009,
abstract = {We prove the Finsler analog of the conformal Lichnerowicz-Obata conjecture showing that a complete and essential conformal vector field on a non-Riemannian Finsler manifold is a homothetic vector field of a Minkowski metric.},
affiliation = {Mathematisches Institut, Friedrich-Schiller Universität Jena 07737 Jena (Germany); Mathematisches Institut, Universität Leipzig, 04081 Leipzig (Germany); Section de Mathématiques, École Polytechnique Fédérale de Lausanne 1015 Lausanne (Switzerland); UMPA, ENS-Lyon, 46, allée d’Italie, 69364 Lyon Cedex 07 (France)},
author = {Matveev, V. S., Rademacher, H.-B., Troyanov, M., Zeghib, A.},
journal = {Annales de l’institut Fourier},
keywords = {Finsler metric; conformal transformation},
language = {eng},
number = {3},
pages = {937-949},
publisher = {Association des Annales de l’institut Fourier},
title = {Finsler Conformal Lichnerowicz-Obata conjecture},
url = {http://eudml.org/doc/10424},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Matveev, V. S.
AU - Rademacher, H.-B.
AU - Troyanov, M.
AU - Zeghib, A.
TI - Finsler Conformal Lichnerowicz-Obata conjecture
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 3
SP - 937
EP - 949
AB - We prove the Finsler analog of the conformal Lichnerowicz-Obata conjecture showing that a complete and essential conformal vector field on a non-Riemannian Finsler manifold is a homothetic vector field of a Minkowski metric.
LA - eng
KW - Finsler metric; conformal transformation
UR - http://eudml.org/doc/10424
ER -
References
top- H. Akbar-Zadeh, Transformations infinitésimales conformes des variétés finslériennes compactes, Ann. Polon. Math. 36 (1979), 213-229 Zbl0413.53036MR537616
- D. V. Alekseevskii, Groups of conformal transformations of Riemannian spaces, (russian) Mat. Sbornik, (131), 1972 (engl.transl.) Math. USSR Sbornik 18 (1972), 285-301 Zbl0263.53029MR334077
- J. C. Alvarez Paiva, Some problems on Finsler geometry, II, p. 1–33 (2006), Elsevier/North-Holland, Amsterdam Zbl1147.53059MR2194667
- D. Bao, S.- S. Chern, Z. Shen, An Introduction to Riemann-Finsler Geometry, (2000), Springer Verlag, New York Zbl0954.53001MR1403571
- R. Benedetti, V. Petronio, Lectures on Hyperbolic Geometry, (1972), Springer, Berlin Zbl0768.51018
- R. L. Bryant, Projectively flat Finsler 2-spheres of constant curvature, Selecta Math. 3 (1997), 161-203 Zbl0897.53052MR1466165
- D. Burago, Yu. Burago, S. Ivanov, A course in metric geometry, (2001), AMS, Providence, RI Zbl0981.51016
- J. Ferrand, Le groupe des automorphismes conformes d’une variété de Finsler compacte, ((1980)), C. R. Acad.Sci, Paris, Sér. A-B 291 Zbl0451.53051
- J. Ferrand, The action of conformal transformations on a Riemannian manifold, Math. Ann. 304 (1996), 277-291 Zbl0866.53027MR1371767
- C. Frances, C. Tarquini, Autour du théorème de Ferrand-Obata, Ann. Gl. Anal. Geom. 21 (2002), 51-62 Zbl1005.53011MR1889249
- W. Kühnel, H.-B. Rademacher, Liouville’s theorem in conformal geometry, J. Math. pures appl. 88 (2007), 251-260 Zbl1127.53014
- R. S. Kulkarni, Conformal structures and Möbius structures, Conformal Geometry (1988), R. S. Kulkarni and U. Pinkall, Braunschweig Zbl0659.53015MR979787
- J. Lafontaine, The theorem of Lelong-Ferrand andObata, Conformal Geometry (1988), R. S. Kulkarni and U. Pinkall, Braunschweig Zbl0668.53022MR979790
- S. Lie, Ueber Complexe, insbesondere Linien- und Kugel-Complexe mit Anwendung auf die Theorie partieller Differentialgleichungen, Math. Ann. 5 (1872), 145-246 MR1509773
- J. Liouville, Extension au cas des trois dimensions de la question du tracé géographique, Applications de l’analyse à la géométrie, Bachelier, Note VI (1850), 609-617, G. Monge, Paris
- V. S. Matveev, Lichnerowicz-Obata conjecture in dimension two, Comm. Math. Helv. 81 (2005), 541-570 Zbl1113.53025MR2165202
- V. S. Matveev, Proof of projective Lichnerowicz-Obata conjecture, J. Diff. Geom. 75 (2007), 459-502 Zbl1115.53029MR2301453
- M. Obata, The conjectures about conformal transformations, J. Diff. Geom. 6 (1971), 247-258 Zbl0236.53042MR303464
- R. Schoen, On the conformal and CR automorphism groups, Geom. Funct. Anal. 5 (1995), 464-481 Zbl0835.53015MR1334876
- Z. Shen, Lectures on Finsler geometry, (2001), World Scientific, Singapore Zbl0974.53002MR1845637
- Z. I. Szabó, Berwald metrics constructed by Chevalley’s polynomials
- R. G. Torrome, Average Riemannian structures associated with a Finsler structure
- Y. Yoshimatsu, On a theorem of Alekseevskii concerning conformal transformations, J.Math.Soc.Japan 28 (1976), 278-289 Zbl0318.53043MR405286
- A. Zeghib, On the conformal group of Finsler manifolds, preprint (2005)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.