Finsler Conformal Lichnerowicz-Obata conjecture

V. S. Matveev[1]; H.-B. Rademacher[2]; M. Troyanov[3]; A. Zeghib[4]

  • [1] Mathematisches Institut, Friedrich-Schiller Universität Jena 07737 Jena (Germany)
  • [2] Mathematisches Institut, Universität Leipzig, 04081 Leipzig (Germany)
  • [3] Section de Mathématiques, École Polytechnique Fédérale de Lausanne 1015 Lausanne (Switzerland)
  • [4] UMPA, ENS-Lyon, 46, allée d’Italie, 69364 Lyon Cedex 07 (France)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 3, page 937-949
  • ISSN: 0373-0956

Abstract

top
We prove the Finsler analog of the conformal Lichnerowicz-Obata conjecture showing that a complete and essential conformal vector field on a non-Riemannian Finsler manifold is a homothetic vector field of a Minkowski metric.

How to cite

top

Matveev, V. S., et al. "Finsler Conformal Lichnerowicz-Obata conjecture." Annales de l’institut Fourier 59.3 (2009): 937-949. <http://eudml.org/doc/10424>.

@article{Matveev2009,
abstract = {We prove the Finsler analog of the conformal Lichnerowicz-Obata conjecture showing that a complete and essential conformal vector field on a non-Riemannian Finsler manifold is a homothetic vector field of a Minkowski metric.},
affiliation = {Mathematisches Institut, Friedrich-Schiller Universität Jena 07737 Jena (Germany); Mathematisches Institut, Universität Leipzig, 04081 Leipzig (Germany); Section de Mathématiques, École Polytechnique Fédérale de Lausanne 1015 Lausanne (Switzerland); UMPA, ENS-Lyon, 46, allée d’Italie, 69364 Lyon Cedex 07 (France)},
author = {Matveev, V. S., Rademacher, H.-B., Troyanov, M., Zeghib, A.},
journal = {Annales de l’institut Fourier},
keywords = {Finsler metric; conformal transformation},
language = {eng},
number = {3},
pages = {937-949},
publisher = {Association des Annales de l’institut Fourier},
title = {Finsler Conformal Lichnerowicz-Obata conjecture},
url = {http://eudml.org/doc/10424},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Matveev, V. S.
AU - Rademacher, H.-B.
AU - Troyanov, M.
AU - Zeghib, A.
TI - Finsler Conformal Lichnerowicz-Obata conjecture
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 3
SP - 937
EP - 949
AB - We prove the Finsler analog of the conformal Lichnerowicz-Obata conjecture showing that a complete and essential conformal vector field on a non-Riemannian Finsler manifold is a homothetic vector field of a Minkowski metric.
LA - eng
KW - Finsler metric; conformal transformation
UR - http://eudml.org/doc/10424
ER -

References

top
  1. H. Akbar-Zadeh, Transformations infinitésimales conformes des variétés finslériennes compactes, Ann. Polon. Math. 36 (1979), 213-229 Zbl0413.53036MR537616
  2. D. V. Alekseevskii, Groups of conformal transformations of Riemannian spaces, (russian) Mat. Sbornik, (131), 1972 (engl.transl.) Math. USSR Sbornik 18 (1972), 285-301 Zbl0263.53029MR334077
  3. J. C. Alvarez Paiva, Some problems on Finsler geometry, II, p. 1–33 (2006), Elsevier/North-Holland, Amsterdam Zbl1147.53059MR2194667
  4. D. Bao, S.- S. Chern, Z. Shen, An Introduction to Riemann-Finsler Geometry, (2000), Springer Verlag, New York Zbl0954.53001MR1403571
  5. R. Benedetti, V. Petronio, Lectures on Hyperbolic Geometry, (1972), Springer, Berlin Zbl0768.51018
  6. R. L. Bryant, Projectively flat Finsler 2-spheres of constant curvature, Selecta Math. 3 (1997), 161-203 Zbl0897.53052MR1466165
  7. D. Burago, Yu. Burago, S. Ivanov, A course in metric geometry, (2001), AMS, Providence, RI Zbl0981.51016
  8. J. Ferrand, Le groupe des automorphismes conformes d’une variété de Finsler compacte, ((1980)), C. R. Acad.Sci, Paris, Sér. A-B 291 Zbl0451.53051
  9. J. Ferrand, The action of conformal transformations on a Riemannian manifold, Math. Ann. 304 (1996), 277-291 Zbl0866.53027MR1371767
  10. C. Frances, C. Tarquini, Autour du théorème de Ferrand-Obata, Ann. Gl. Anal. Geom. 21 (2002), 51-62 Zbl1005.53011MR1889249
  11. W. Kühnel, H.-B. Rademacher, Liouville’s theorem in conformal geometry, J. Math. pures appl. 88 (2007), 251-260 Zbl1127.53014
  12. R. S. Kulkarni, Conformal structures and Möbius structures, Conformal Geometry (1988), R. S. Kulkarni and U. Pinkall, Braunschweig Zbl0659.53015MR979787
  13. J. Lafontaine, The theorem of Lelong-Ferrand andObata, Conformal Geometry (1988), R. S. Kulkarni and U. Pinkall, Braunschweig Zbl0668.53022MR979790
  14. S. Lie, Ueber Complexe, insbesondere Linien- und Kugel-Complexe mit Anwendung auf die Theorie partieller Differentialgleichungen, Math. Ann. 5 (1872), 145-246 MR1509773
  15. J. Liouville, Extension au cas des trois dimensions de la question du tracé géographique, Applications de l’analyse à la géométrie, Bachelier, Note VI (1850), 609-617, G. Monge, Paris 
  16. V. S. Matveev, Lichnerowicz-Obata conjecture in dimension two, Comm. Math. Helv. 81 (2005), 541-570 Zbl1113.53025MR2165202
  17. V. S. Matveev, Proof of projective Lichnerowicz-Obata conjecture, J. Diff. Geom. 75 (2007), 459-502 Zbl1115.53029MR2301453
  18. M. Obata, The conjectures about conformal transformations, J. Diff. Geom. 6 (1971), 247-258 Zbl0236.53042MR303464
  19. R. Schoen, On the conformal and CR automorphism groups, Geom. Funct. Anal. 5 (1995), 464-481 Zbl0835.53015MR1334876
  20. Z. Shen, Lectures on Finsler geometry, (2001), World Scientific, Singapore Zbl0974.53002MR1845637
  21. Z. I. Szabó, Berwald metrics constructed by Chevalley’s polynomials 
  22. R. G. Torrome, Average Riemannian structures associated with a Finsler structure 
  23. Y. Yoshimatsu, On a theorem of Alekseevskii concerning conformal transformations, J.Math.Soc.Japan 28 (1976), 278-289 Zbl0318.53043MR405286
  24. A. Zeghib, On the conformal group of Finsler manifolds, preprint (2005) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.