Page 1 Next

Displaying 1 – 20 of 182

Showing per page

A framed f-structure on the tangent bundle of a Finsler manifold

Esmaeil Peyghan, Chunping Zhong (2012)

Annales Polonici Mathematici

Let (M,F) be a Finsler manifold, that is, M is a smooth manifold endowed with a Finsler metric F. In this paper, we introduce on the slit tangent bundle T M ˜ a Riemannian metric G̃ which is naturally induced by F, and a family of framed f-structures which are parameterized by a real parameter c≠ 0. We prove that (i) the parameterized framed f-structure reduces to an almost contact structure on IM; (ii) the almost contact structure on IM is a Sasakian structure iff (M,F) is of constant flag curvature...

Barbilian's metrization procedure in the plane yields either Riemannian or Lagrange generalized metrics

Wladimir G. Boskoff, Bogdan D. Suceavă (2008)

Czechoslovak Mathematical Journal

In the present paper we answer two questions raised by Barbilian in 1960. First, we study how far can the hypothesis of Barbilian's metrization procedure can be relaxed. Then, we prove that Barbilian's metrization procedure in the plane generates either Riemannian metrics or Lagrance generalized metrics not reducible to Finslerian or Langrangian metrics.

Currently displaying 1 – 20 of 182

Page 1 Next