Stochastic approximations of the solution of a full Boltzmann equation with small initial data

Sylvie Meleard

ESAIM: Probability and Statistics (1998)

  • Volume: 2, page 23-40
  • ISSN: 1292-8100

How to cite

top

Meleard, Sylvie. "Stochastic approximations of the solution of a full Boltzmann equation with small initial data." ESAIM: Probability and Statistics 2 (1998): 23-40. <http://eudml.org/doc/104250>.

@article{Meleard1998,
author = {Meleard, Sylvie},
journal = {ESAIM: Probability and Statistics},
keywords = {Boltzmann equation; existence and uniqueness; nonlinear martingale problem; algorithms; associated mean-field interacting particle systems},
language = {eng},
pages = {23-40},
publisher = {EDP Sciences},
title = {Stochastic approximations of the solution of a full Boltzmann equation with small initial data},
url = {http://eudml.org/doc/104250},
volume = {2},
year = {1998},
}

TY - JOUR
AU - Meleard, Sylvie
TI - Stochastic approximations of the solution of a full Boltzmann equation with small initial data
JO - ESAIM: Probability and Statistics
PY - 1998
PB - EDP Sciences
VL - 2
SP - 23
EP - 40
LA - eng
KW - Boltzmann equation; existence and uniqueness; nonlinear martingale problem; algorithms; associated mean-field interacting particle systems
UR - http://eudml.org/doc/104250
ER -

References

top
  1. BELLOMO, N., PALCZEWSKI, A. and TOSCANI, G. ( 1988). Mathematical topics in nonlinear kinetic theory. World scientific, Singapore. Zbl0702.76005MR996631
  2. CAPRINO, S. and PULVIRENTI, M. ( 1995). A cluster expansion approach to a onedimensional Boltzmann equation: a validity result. Comm. Math. Phys. 166 603-621. Zbl0811.60099MR1312437
  3. CERCIGNANI, C., ILLNER, R. and PULVIRENTI, M. ( 1994). The mathematical theory of dilute gases. Applied math. Sciences, Springer-Verlag, Berlin. Zbl0813.76001MR1307620
  4. DIPERNA, R.J. and LIONS P-L. ( 1989). On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. 130 321-366. Zbl0698.45010MR1014927
  5. GRAHAM, C. and MÉLÉARD, S. ( 1997). Stochastic particle approximations for generalized Boltzmann models and convergence estimates. Ann. Prob. 25 115-132. Zbl0873.60076MR1428502
  6. HAMDACHE, K. ( 1985). Existence in the large and asymptotic behaviour for the Boltzmann equation. Japan J. Appl. Math. 2 65-84. Zbl0653.76053MR839316
  7. JACOD, J. and SHIRYEAV, A.N. ( 1987). Limit theorems for stochastic processes. Springer-Verlag. Zbl0635.60021MR959133
  8. JOFFE, A. and MÉTIVIER, M. ( 1986). Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. Appl. Prob. 18 20-65. Zbl0595.60008MR827331
  9. KANIEL, S. and SHINBROT, M. ( 1978). The Boltzmann equation I: uniqueness and global existence. Comm. Math. Phys. 95 117-126. Zbl0371.76061MR475532
  10. MÉLÉARD, S. ( 1996). Asymptotic behaviour of some interacting particle systems, McKean-Vlasov and Boltzmann models. CIME 1995: Probabilistic models for nonlinear pde's, Lect. Notes in Math. 1627, Springer. Zbl0864.60077MR1431299
  11. MEYER, P.A. ( 1966). Probabilités et Potentiels. Hermann. Zbl0138.10402MR205287
  12. MISCHLER, S. and PERTHAME, B. ( 1997). Boltzmann equation with infinite energy. SIAM J. Math. Analysis 28 1015-1027. Zbl0889.35077MR1466666
  13. NANBU, K. ( 1983). Interrelations between various direct simulation methods for solving the Boltzmann equation. J. Phys. Soc. Japan 52 3382-3388. 
  14. REZAKHZANLOU, F. ( 1996). Kinetic limits for a class ofinteract ing particle systems. Prob. Theory and rel. Fields 104 97-146. Zbl0838.60085MR1367669
  15. SZNITMAN, A.S. ( 1991). Topics in propagation of chaos. École d'été de Probabilités de Saint-Flour XIX - 1989, Lect. Notes in Math. 1464, Springer. Zbl0732.60114MR1108185
  16. TOSCANI, G. ( 1986). On the nonlinear Boltzmann equation in unbounded domains. Arch. Rat. Mech. Anal. 95 37-49. Zbl0661.76077MR849403

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.