Bounds and asymptotic expansions for the distribution of the maximum of a smooth stationary gaussian process

Jean-Marc Azaïs; Christine Cierco-Ayrolles; Alain Croquette

ESAIM: Probability and Statistics (1999)

  • Volume: 3, page 107-129
  • ISSN: 1292-8100

How to cite

top

Azaïs, Jean-Marc, Cierco-Ayrolles, Christine, and Croquette, Alain. "Bounds and asymptotic expansions for the distribution of the maximum of a smooth stationary gaussian process." ESAIM: Probability and Statistics 3 (1999): 107-129. <http://eudml.org/doc/104252>.

@article{Azaïs1999,
author = {Azaïs, Jean-Marc, Cierco-Ayrolles, Christine, Croquette, Alain},
journal = {ESAIM: Probability and Statistics},
language = {eng},
pages = {107-129},
publisher = {EDP Sciences},
title = {Bounds and asymptotic expansions for the distribution of the maximum of a smooth stationary gaussian process},
url = {http://eudml.org/doc/104252},
volume = {3},
year = {1999},
}

TY - JOUR
AU - Azaïs, Jean-Marc
AU - Cierco-Ayrolles, Christine
AU - Croquette, Alain
TI - Bounds and asymptotic expansions for the distribution of the maximum of a smooth stationary gaussian process
JO - ESAIM: Probability and Statistics
PY - 1999
PB - EDP Sciences
VL - 3
SP - 107
EP - 129
LA - eng
UR - http://eudml.org/doc/104252
ER -

References

top
  1. [1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York ( 1972). Zbl0543.33001MR208797
  2. [2] R.J. Adler, An Introduction to Continuity, Extrema and Related Topics for General Gaussian Processes, IMS, Hayward, Ca ( 1990). Zbl0747.60039MR1088478
  3. [3] J.-M. Azaïs and M. Wschebor, Une formule pour calculer la distribution du maximum d'un processus stochastique. C.R. Acad. Sci. Paris Ser. I Math. 324 ( 1997) 225-230. Zbl0880.60056MR1438389
  4. [4] J-M. Azaïs and M. Wschebor, The Distribution of the Maximum of a Stochastic Process and the Rice Method, submitted. Zbl1018.60036
  5. [5] C. Cierco, Problèmes statistiques liés à la détection et à la localisation d'un gène à effet quantitatif. PHD dissertation. University of Toulouse, France ( 1996). 
  6. [6] C. Cierco and J.-M. Azaïs, Testing for Quantitative Gene Detection in Dense Map, submitted. 
  7. [7] H. Cramér and M.R. Leadbetter, Stationary and Related Stochastic Processes, J. Wiley & Sons, New-York ( 1967). Zbl0162.21102MR217860
  8. [8] D. Dacunha-Castelle and E. Gassiat, Testing in locally conic models, and application to mixture models. ESAIM: Probab. Statist. 1 ( 1997) 285-317. Zbl1007.62507MR1468112
  9. [9] R.B. Davies, Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika 64 ( 1977) 247-254. Zbl0362.62026MR501523
  10. [10] J. Ghosh and P. Sen, On the asymptotic performance of the log-likelihood ratio statistic for the mixture model and related results, in Proc. of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer, Le Cam L.M. and Olshen R.A., Eds. ( 1985). MR822065
  11. [11] M.F. Kratz and H. Rootzén, On the rate of convergence for extreme of mean square differentiable stationary normal processes. J. Appl. Prob. 34 ( 1997) 908-923. Zbl0903.60043MR1484024
  12. [12] M.R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, New-York ( 1983). Zbl0518.60021MR691492
  13. [13] R.N. Miroshin, Rice series in the theory of random functions. Vestnik Leningrad Univ. Math. 1 ( 1974) 143-155. 
  14. [14] M.B. Monagan, et al., Maple V Programming guide. Springer ( 1998). Zbl0877.68070
  15. [15] V.I. Piterbarg, Comparison of distribution functions of maxima of Gaussian processes. Theory Probab. Appl. 26 ( 1981) 687-705. Zbl0488.60051MR636766
  16. [16] V.I. Piterbarg, Large deviations of random processes close to gaussian ones. Theory Probab. Appl. 27 ( 1982) 504-524. Zbl0517.60029MR673920
  17. [17] V.I. Piterbarg, Asymptotic Methods in the Theory of Gaussian Processes and Fields. American Mathematical Society. Providence, Rhode Island ( 1996). Zbl0841.60024MR1361884
  18. [18] S.O. Rice, Mathematical Analysis of Random Noise. Bell System Tech. J. 23 ( 1944) 282-332; 24 ( 1945) 45-156. Zbl0063.06485MR10932
  19. [19] SPLUS, Statistical Sciences, S-Plus Programmer's Manual, Version 3.2, Seattle: StatSci, a division of MathSoft, Inc. ( 1993). 
  20. [20] J. Sun, Significance levels in exploratory projection pursuit. Biometrika 78 ( 1991759-769. Zbl0753.62067MR1147012
  21. [21] M. Wschebor, Surfaces aléatoires. Mesure géometrique des ensembles de niveau. Springer-Verlag, New-York, Lecture Notes in Mathematics 1147 ( 1985). Zbl0573.60017MR871689

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.