Page 1 Next

## Displaying 1 – 20 of 23

Showing per page

### A note on a weighted Ostrowski type inequality for cumulative distribution functions.

JIPAM. Journal of Inequalities in Pure &amp; Applied Mathematics [electronic only]

### Bounds and asymptotic expansions for the distribution of the maximum of a smooth stationary gaussian process

ESAIM: Probability and Statistics

### Bounds and asymptotic expansions for the distribution of the Maximum of a smooth stationary Gaussian process

ESAIM: Probability and Statistics

This paper uses the Rice method [18] to give bounds to the distribution of the maximum of a smooth stationary Gaussian process. We give simpler expressions of the first two terms of the Rice series [3,13] for the distribution of the maximum. Our main contribution is a simpler form of the second factorial moment of the number of upcrossings which is in some sense a generalization of Steinberg et al.'s formula ([7] p. 212). Then, we present a numerical application and asymptotic expansions...

### Compositional models, Bayesian models and recursive factorization models

Kybernetika

Compositional models are used to construct probability distributions from lower-order probability distributions. On the other hand, Bayesian models are used to represent probability distributions that factorize according to acyclic digraphs. We introduce a class of models, called recursive factorization models, to represent probability distributions that recursively factorize according to sequences of sets of variables, and prove that they have the same representation power as both compositional...

### Conditional problem for objective probability

Kybernetika

Marginal problem (see [Kel]) consists in finding a joint distribution whose marginals are equal to the given less-dimensional distributions. Let’s generalize the problem so that there are given not only less-dimensional distributions but also conditional probabilities. It is necessary to distinguish between objective (Kolmogorov) probability and subjective (de Finetti) approach ([Col,Sco]). In the latter, the coherence problem incorporates both probabilities and conditional probabilities in a unified...

### Distinguishing and integrating aleatoric and epistemic variation in uncertainty quantification

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Much of uncertainty quantification to date has focused on determining the effect of variables modeled probabilistically, and with a known distribution, on some physical or engineering system. We develop methods to obtain information on the system when the distributions of some variables are known exactly, others are known only approximately, and perhaps others are not modeled as random variables at all.The main tool used is the duality between risk-sensitive integrals and relative entropy, and we...

### Equivalence of compositional expressions and independence relations in compositional models

Kybernetika

We generalize Jiroušek’s (right) composition operator in such a way that it can be applied to distribution functions with values in a “semifield“, and introduce (parenthesized) compositional expressions, which in some sense generalize Jiroušek’s “generating sequences” of compositional models. We say that two compositional expressions are equivalent if their evaluations always produce the same results whenever they are defined. Our first result is that a set system $ℋ$ is star-like with centre $X$ if...

Kybernetika

### Exponential inequalities for VLMC empirical trees

ESAIM: Probability and Statistics

A seminal paper by Rissanen, published in 1983, introduced the class of Variable Length Markov Chains and the algorithm Context which estimates the probabilistic tree generating the chain. Even if the subject was recently considered in several papers, the central question of the rate of convergence of the algorithm remained open. This is the question we address here. We provide an exponential upper bound for the probability of incorrect estimation of the probabilistic tree, as a function...

### General approximation method for the distribution of Markov processes conditioned not to be killed

ESAIM: Probability and Statistics

We consider a strong Markov process with killing and prove an approximation method for the distribution of the process conditioned not to be killed when it is observed. The method is based on a Fleming−Viot type particle system with rebirths, whose particles evolve as independent copies of the original strong Markov process and jump onto each others instead of being killed. Our only assumption is that the number of rebirths of the Fleming−Viot type system doesn’t explode in finite time almost surely...

### Global approximations for the γ-order Lognormal distribution

Discussiones Mathematicae Probability and Statistics

A generalized form of the usual Lognormal distribution, denoted with ${}_{\gamma }$, is introduced through the γ-order Normal distribution ${}_{\gamma }$, with its p.d.f. defined into (0,+∞). The study of the c.d.f. of ${}_{\gamma }$ is focused on a heuristic method that provides global approximations with two anchor points, at zero and at infinity. Also evaluations are provided while certain bounds are obtained.

### Marginalization in models generated by compositional expressions

Kybernetika

In the framework of models generated by compositional expressions, we solve two topical marginalization problems (namely, the single-marginal problem and the marginal-representation problem) that were solved only for the special class of the so-called “canonical expressions”. We also show that the two problems can be solved “from scratch” with preliminary symbolic computation.

### Marginalization in multidimensional compositional models

Kybernetika

Efficient computational algorithms are what made graphical Markov models so popular and successful. Similar algorithms can also be developed for computation with compositional models, which form an alternative to graphical Markov models. In this paper we present a theoretical basis as well as a scheme of an algorithm enabling computation of marginals for multidimensional distributions represented in the form of compositional models.

### On computations with causal compositional models

Kybernetika

The knowledge of causal relations provides a possibility to perform predictions and helps to decide about the most reasonable actions aiming at the desired objectives. Although the causal reasoning appears to be natural for the human thinking, most of the traditional statistical methods fail to address this issue. One of the well-known methodologies correctly representing the relations of cause and effect is Pearl's causality approach. The paper brings an alternative, purely algebraic methodology...

### On the mean speed of convergence of empirical and occupation measures in Wasserstein distance

Annales de l'I.H.P. Probabilités et statistiques

In this work, we provide non-asymptotic bounds for the average speed of convergence of the empirical measure in the law of large numbers, in Wasserstein distance. We also consider occupation measures of ergodic Markov chains. One motivation is the approximation of a probability measure by finitely supported measures (the quantization problem). It is found that rates for empirical or occupation measures match or are close to previously known optimal quantization rates in several cases. This is notably...

### Optimal uncertainty quantification for legacy data observations of Lipschitz functions

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the problem of providing optimal uncertainty quantification (UQ) – and hence rigorous certification – for partially-observed functions. We present a UQ framework within which the observations may be small or large in number, and need not carry information about the probability distribution of the system in operation. The UQ objectives are posed as optimization problems, the solutions of which are optimal bounds on the quantities of interest; we consider two typical settings, namely parameter...

### Perfect simulation from the quicksort limit distribution.

Electronic Communications in Probability [electronic only]

### Point ordering with natural distance based on Brownian motion.

Mathematical Problems in Engineering

Integers

### Sudden death testing versus traditional censored life testing. A Monte-Carlo study

Control and Cybernetics

Page 1 Next