Poisson perturbations

Andrew D. Barbour; Aihua Xia

ESAIM: Probability and Statistics (1999)

  • Volume: 3, page 131-150
  • ISSN: 1292-8100

How to cite

top

Barbour, Andrew D., and Xia, Aihua. "Poisson perturbations." ESAIM: Probability and Statistics 3 (1999): 131-150. <http://eudml.org/doc/104253>.

@article{Barbour1999,
author = {Barbour, Andrew D., Xia, Aihua},
journal = {ESAIM: Probability and Statistics},
keywords = {Stein's method; signed compound Poisson measure; total variation; coupling; sums of random variables; compound measures},
language = {eng},
pages = {131-150},
publisher = {EDP Sciences},
title = {Poisson perturbations},
url = {http://eudml.org/doc/104253},
volume = {3},
year = {1999},
}

TY - JOUR
AU - Barbour, Andrew D.
AU - Xia, Aihua
TI - Poisson perturbations
JO - ESAIM: Probability and Statistics
PY - 1999
PB - EDP Sciences
VL - 3
SP - 131
EP - 150
LA - eng
KW - Stein's method; signed compound Poisson measure; total variation; coupling; sums of random variables; compound measures
UR - http://eudml.org/doc/104253
ER -

References

top
  1. [1] M. Abramowitz and I.A. Stegun, Handbook of mathematical functions. Dover, New York ( 1964). 
  2. [2] R. Arratia, A.D. Barbour and S. Tavaré, The number of components in a logarithmic combinatorial structure. Ann. Appl. Probab., to appear. Zbl1056.60012MR1768242
  3. [3] R. Arratia, L. Goldstein and L. Gordon, Poisson approximation and the Chen-Stein method. Stat. Science 5 ( 1990) 403-434. Zbl0955.62542MR1092983
  4. [4] A.D. Barbour and J.L. Jensen, Local and tail approximations near the Poisson limit. Scand. J. Statist. 16 ( 1989) 75-87. Zbl0674.60022MR1003970
  5. [5] A.D. Barbour and S. Utev, Solving the Stein equation in compound Poisson approximationAdv. in Appl. Probab. 30 ( 1998) 449-475. Zbl0982.62007MR1642848
  6. [6] A.D. Barbour and S. Utev, Compound Poisson approximation in total variation. Stochastic Process. Appl., to appear. Zbl0991.62008MR1695071
  7. [7] V. Čekanavičius, Asymptotic expansions in the exponent: A compound Poisson approach. Adv. in Appl. Probab. 29 ( 1997) 374-387. Zbl0895.60029MR1450935
  8. [8] P. Eichelsbacher and M. Roos, Compound Poisson approximation for dissociated random variables via Stein's method ( 1998) preprint. Zbl0982.62008MR1723647
  9. [9] J. Kruopis, Precision of approximations of the generalized Binomial distribution by convolutions of Poisson measures. Lithuanian Math. J. 26 ( 1986) 37-49. Zbl0631.60019
  10. [10] T. Lindvall, Lectures on the coupling method. Wiley, New York ( 1992). Zbl0850.60019MR1180522
  11. [11] E.L. Presman, Approximation of binomial distributions by infinitely divisible ones. Theory. Probab. Appl. 28 ( 1983) 393-403. Zbl0533.60018MR700218
  12. [12] D.A. Raikov, On the decomposition of Gauss and Poisson laws. Izv. Akad. Nauk Armyan. SSR Ser. Mat. 2 ( 1938) 91-124. Zbl0018.41204
  13. [13] M. Roos, Stein-Chen method for compound Poisson approximation. Ph. D. Dissertation, University of Zürich ( 1993). Zbl0853.60020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.