Approximation of reliability for a large system with non-markovian repair-times

Jean-Louis Bon; Jean Bretagnolle

ESAIM: Probability and Statistics (1999)

  • Volume: 3, page 49-65
  • ISSN: 1292-8100

How to cite

top

Bon, Jean-Louis, and Bretagnolle, Jean. "Approximation of reliability for a large system with non-markovian repair-times." ESAIM: Probability and Statistics 3 (1999): 49-65. <http://eudml.org/doc/104257>.

@article{Bon1999,
author = {Bon, Jean-Louis, Bretagnolle, Jean},
journal = {ESAIM: Probability and Statistics},
keywords = {harmonic new better than used in expectation; constant failure rate; general repair rate; HNBUE},
language = {eng},
pages = {49-65},
publisher = {EDP Sciences},
title = {Approximation of reliability for a large system with non-markovian repair-times},
url = {http://eudml.org/doc/104257},
volume = {3},
year = {1999},
}

TY - JOUR
AU - Bon, Jean-Louis
AU - Bretagnolle, Jean
TI - Approximation of reliability for a large system with non-markovian repair-times
JO - ESAIM: Probability and Statistics
PY - 1999
PB - EDP Sciences
VL - 3
SP - 49
EP - 65
LA - eng
KW - harmonic new better than used in expectation; constant failure rate; general repair rate; HNBUE
UR - http://eudml.org/doc/104257
ER -

References

top
  1. [1] R.E. Barlow and F. Proschan, Statistical Theory of Reliability and Life Testing. Holt, Rhineart and Winston, New York ( 1975). Zbl0379.62080MR438625
  2. [2] J.-L. Bon, Méthodes Mathématiques de Fiabilité, Éditions Masson, Paris ( 1995). 
  3. [3] J.-L. Bon and E. Paltanea, Encadrement de la fiabilité d'un système markovien à partir des caractéristiques de ses composants, Actes des XXIXes Journées de Statistique, ASU ( 1997). 
  4. [4] K. Chen and Z. He, Reliability bounds for NBUE and NWUE distributions. Acta Mat. Appli. Sinica 4 ( 1989). Zbl0682.62078MR1003622
  5. [5] D.R. Cox, Renewal Theory, J. Wiley ( 1967). Zbl0168.16106
  6. [6] I.B. Gertsbakh, Asymptotic methods in reliability theory: A review. Adv. in Appl. Prob. 16 ( 1984) 47-175. Zbl0528.60085MR732135
  7. [7] D.B. Gnedenko and A.D. Solovyev, Estimation de la fiabilité des systèmes réparables complexes. Teknicheskaia Kibernetika 3 ( 1975) 121-128 (en russe). Zbl0312.90022MR423732
  8. [8] V.V. Kalashnikov, Geometric sums: Bounds for rare events with applications, Kluwer academic Publishers ( 1997). Zbl0881.60043MR1471479
  9. [9] G.P. Klimov, Stokastiskie systemi obslujivanie, Nauka (in Russian) ( 1966). MR207064
  10. [10] J. Keilson, Stochastic models in reliability theory, in Teoria dell affidabilita, Proc. Int. School Enrico Fermi, North-Holland ( 1984). Zbl0704.60086MR891218
  11. [11] I.N. Kovalenko, N.Yu. Kuznetsov and P.A. Pegg, Mathematical Theory of Reliability of Time dependent Systems with Practical Applications, J. Wiley ( 1997). Zbl0899.60074
  12. [12] P. Pamphile, Calcul de fiabilité de grands systèmes hautement fiables, Thèse université Paris-Sud (Orsay), Paris ( 1994). 
  13. [13] A.D. Solovyev, Voprosi Matematicheskoi Teorii Nadejnosti, Gnedenko B.V., Ed., Radio i Sviaz, Moscow ( 1983) (in Russian). 
  14. [14] A.D. Solovyev and D.G. Konstant, Reliability estimation of a complex renewable system with an unbounded number of repair units. J. Appl. Probab. 28 ( 1991) 833-842. Zbl0746.60087MR1133791

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.