A bulk queueing system under -policy with bilevel service delay discipline and start-up time.
This paper presents a new approach to sensor placement based on diagnosability criteria. It is based on the study of structural matrices. Properties of structural matrices regarding detectability, discriminability and diagnosability are established in order to be used by sensor placement methods. The proposed approach manages any number of constraints modelled by linear or nonlinear equations and it does not require the design of analytical redundancy relations. Assuming that a constraint models...
In complex industrial plants, there are usually many sensors and the modeling of plants leads to lots of mathematical relations. This paper presents a general method for finding all the possible testable subsystems, i.e., sets of relations that can lead to various types of detection tests. This method, which is based on structural analysis, provides the constraints that have to be used for the design of each detection test and manages situations where constraints contain non-deductible variables...
The paper deals with the optimal inspections and maintenance problem with costly information for a Markov process with positive discount factor. The associated dynamic programming equation is a quasi-variational inequality with first order differential terms. In this paper we study its different formulations: strong, visousity and evolutionary. The case of impulsive control of purely jump Markov processes is studied as a special case.
A system with a single activated unit, which can be in a finite number of states, is considered. Inspections of the system are carried out at discrete time instants. It is possible to replace it by a new one at these moments. The user of the system, by setting down conditions of replacements, wants to maximize his gain, which does not include the rest value of units. On a numerical example it is shown that the frequency of replacements of the unit need not be the greater the longer is the period...
Analytical fault detection algorithms have the potential to reduce the size, power and weight of safety-critical aerospace systems. Analytical redundancy has been successfully applied in many non-safety critical applications. However, acceptance for aerospace applications will require new methods to rigorously certify the impact of such algorithms on the overall system reliability. This paper presents a theoretical method to assess the probabilistic performance for an analytically redundant system....