Schémas de discrétisation anticipatifs et estimation du paramètre de dérive d'une diffusion
ESAIM: Probability and Statistics (2000)
- Volume: 4, page 233-258
- ISSN: 1292-8100
Access Full Article
topHow to cite
topSouchet Samos, Sandie. "Schémas de discrétisation anticipatifs et estimation du paramètre de dérive d'une diffusion." ESAIM: Probability and Statistics 4 (2000): 233-258. <http://eudml.org/doc/104265>.
@article{SouchetSamos2000,
author = {Souchet Samos, Sandie},
journal = {ESAIM: Probability and Statistics},
keywords = {trapezoidal scheme; Simpson scheme; ergodic diffusion; instrumental variables estimation; generalized method of moments; contrast; bias of estimation; variance asymptotic efficiency},
language = {fre},
pages = {233-258},
publisher = {EDP Sciences},
title = {Schémas de discrétisation anticipatifs et estimation du paramètre de dérive d'une diffusion},
url = {http://eudml.org/doc/104265},
volume = {4},
year = {2000},
}
TY - JOUR
AU - Souchet Samos, Sandie
TI - Schémas de discrétisation anticipatifs et estimation du paramètre de dérive d'une diffusion
JO - ESAIM: Probability and Statistics
PY - 2000
PB - EDP Sciences
VL - 4
SP - 233
EP - 258
LA - fre
KW - trapezoidal scheme; Simpson scheme; ergodic diffusion; instrumental variables estimation; generalized method of moments; contrast; bias of estimation; variance asymptotic efficiency
UR - http://eudml.org/doc/104265
ER -
References
top- [1] A.R. Bergstrom, Statistical inference in Continuous Time Series, in Statistical inference in Continuons Time Economic Models, Bergstrom, Ed., North Holland, Amsterdam ( 1976). Zbl0348.00027
- [2] B.M. Bibby et M. Sorensen, Martingale Estimation Functions for Discretely Observed Diffusion Processes. Bernoulli 1 ( 1995) 17-39. Zbl0830.62075MR1354454
- [3] D. Dacunha-Castelle et M. Duflo, Probabilité et Statistiques. Tome 2, 2e Ed. Masson ( 1993). Zbl0535.62004MR732786
- [4] D. Dacunha-Castelle et D. Florens-Zmirou, Estimation of the coefficient of a diffusion from discrete observations. Stochastics 19 ( 1986) 263-284. Zbl0626.62085MR872464
- [5] D. Florens-Zmirou, Approximate discrete schemes for statistics of diffusion processes. Statistics 20 ( 1989) 547-557. Zbl0704.62072MR1047222
- [6] C. Gourieroux et A. Monfort, Statistique et Modèles Économétriques. Tome 1. Economica.
- [7] L. Hansen, Large Sample Properies of Generalized Method of Moments Estimators. Econometrica 50 ( 1982) 1029-1054. Zbl0502.62098MR666123
- [8] L. Hansen et K. Singleton, Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models. Econometrica 50 ( 1982) 1269-1286. Zbl0497.62098MR673689
- [9] I. Karatzas et S.E. Shreve, Brownian Motion and Stochastic Calculus, 2nd Ed. Springer ( 1996). Zbl0734.60060MR917065
- [10] M. Kessler, Estimation of an ergodic diffusion from discrete observations. Scand. J. Stat. 24 ( 1997) 211-229. Zbl0879.60058MR1455868
- [11] M. Kessler, Simple and Explicit Estimating Functions for a Discretely Observed Diffusion Process. Research Reports 336, Department of theoretical statistics, University of Aarhus ( 1995).
- [12] M. Kessler et M. Sorensen, Estimating Equations Based on Eigenfunctions for a Discretely Observed Diffusion Process. Research Reports 332, Department of theoretical statistics, University of Aarhus ( 1995). Zbl0980.62074
- [13] P.E. Kloeden et E. Platen, Numerical Solution of Stochastic Differential Equations. Springer ( 1995). Zbl0752.60043MR1214374
- [14] Yu. A. Kutoyants, Parameter estimation for stochastic processes. Heldermann Verlag, Berlin, Research and Exposition in Math. 6 ( 1984). Zbl0542.62073MR777685
- [15] R.S. Liptser et A.N. Shiryaev, Statistics of random processes. Tomes 1, 2. Springer-Verlag ( 1977). Zbl0364.60004
- [16] W.H. Press, S.A. Teukolskey, W.T. Vetterling et B.P. Flannery, Numerical Recipes in C, 2nd Ed. Cambridge University Press, 132-133. Zbl0587.65005
- [17] B.L.S. Prakasa-Rao, Asymptotic theory for non linear least squares estimator for diffusion proceses. Math. Operationsforsch. Statist Ser. Berlin 14 ( 1983) 195-209. Zbl0532.62060MR704787
- [18] A.R. Pedersen, Consistency and asymptotic normality of an approximate maximum likelihood estimator for discretely observed diffusion processes. Bernoulli 1 ( 1995) 257-279. Zbl0839.62079MR1363541
- [19] A.R. Pedersen, A new approch to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand. J. Statist. 22 ( 1995) 55-71. Zbl0827.62087MR1334067
- [20] J.D. Sargan, Some discrete approximations to continuous times stochastics models, in Statistical inference in Continuous Time Economic Models. Bergstrom, Ed., North Holand, Amsterdam ( 1976) 27-80. Zbl0357.62067
- [21] M. Sorensen, Estimating functions for discretely observed diffusions: A review. Research Reports 348, Department of theoreical statistics, University of Aarhus ( 1996). Zbl0906.62079MR1837812
- [22] N. Yoshida, Estimation for diffusion processes from discrete observations. J. Multivariate Anal. 41 ( 1992) 220-242. Zbl0811.62083MR1172898
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.