On microlocal analyticity of solutions of first-order nonlinear PDE
Shif Berhanu[1]
- [1] Temple University Department of Mathematics Philadelphia, PA 19122 (USA)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 4, page 1267-1290
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBerhanu, Shif. "On microlocal analyticity of solutions of first-order nonlinear PDE." Annales de l’institut Fourier 59.4 (2009): 1267-1290. <http://eudml.org/doc/10427>.
@article{Berhanu2009,
abstract = {We study the microlocal analyticity of solutions $u$ of the nonlinear equation\[ u\_\{t\} = f(x, t, u, u\_\{x\}) \]where $f(x, t,\zeta _\{0\}, \zeta )$ is complex-valued, real analytic in all its arguments and holomorphic in $(\zeta _\{0\}, \zeta )$. We show that if the function $u$ is a $C^2$ solution, $\sigma \in \text\{Char\}\,L^\{u\}$ and $\frac\{1\}\{i\}\sigma ([L^\{u\}, \overline\{L^u\}]) < 0$ or if $u$ is a $C^3$ solution, $\sigma \in \text\{Char\}\,L^\{u\}$, $\sigma ([L^\{u\}, \overline\{L^u\}]) = 0$, and $ \sigma ([L^u,[L^\{u\},\overline\{L^u\}]]) \ne 0$, then $\sigma \notin WF_\{a\}u$. Here $WF_\{a\}u $ denotes the analytic wave-front set of $u$ and Char$\,L^u$ is the characteristic set of the linearized operator. When $m=1$, we prove a more general result involving the repeated brackets of $L^u$ and $\overline\{L^u\}$ of any order.},
affiliation = {Temple University Department of Mathematics Philadelphia, PA 19122 (USA)},
author = {Berhanu, Shif},
journal = {Annales de l’institut Fourier},
keywords = {Analytic wave-front set; linearized operator; analytic wave-front set},
language = {eng},
number = {4},
pages = {1267-1290},
publisher = {Association des Annales de l’institut Fourier},
title = {On microlocal analyticity of solutions of first-order nonlinear PDE},
url = {http://eudml.org/doc/10427},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Berhanu, Shif
TI - On microlocal analyticity of solutions of first-order nonlinear PDE
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 4
SP - 1267
EP - 1290
AB - We study the microlocal analyticity of solutions $u$ of the nonlinear equation\[ u_{t} = f(x, t, u, u_{x}) \]where $f(x, t,\zeta _{0}, \zeta )$ is complex-valued, real analytic in all its arguments and holomorphic in $(\zeta _{0}, \zeta )$. We show that if the function $u$ is a $C^2$ solution, $\sigma \in \text{Char}\,L^{u}$ and $\frac{1}{i}\sigma ([L^{u}, \overline{L^u}]) < 0$ or if $u$ is a $C^3$ solution, $\sigma \in \text{Char}\,L^{u}$, $\sigma ([L^{u}, \overline{L^u}]) = 0$, and $ \sigma ([L^u,[L^{u},\overline{L^u}]]) \ne 0$, then $\sigma \notin WF_{a}u$. Here $WF_{a}u $ denotes the analytic wave-front set of $u$ and Char$\,L^u$ is the characteristic set of the linearized operator. When $m=1$, we prove a more general result involving the repeated brackets of $L^u$ and $\overline{L^u}$ of any order.
LA - eng
KW - Analytic wave-front set; linearized operator; analytic wave-front set
UR - http://eudml.org/doc/10427
ER -
References
top- A. Asano, On the wave-front set of solutions of first order nonlinear pde’s, Proc. Amer. Math. Soc. 123 (1995), 3009-3019 Zbl0848.35024MR1264801
- M. S. Baouendi, C. H. Chang, F. Treves, Microlocal hypo-analyticity and extension of CR functions, J. Differential Geometry 18 (1983), 331-391 Zbl0575.32019MR723811
- D. Chae, A. Cordoba, D. Cordoba, M. Fontelos, Finite time singularities in a 1D model of the quasi-geostrophic equation, Advances in Mathematics 194 (2005), 203-223 Zbl1128.76372MR2141858
- C. H. Chang, Hypo-analyticity with vanishing Levi form, Bull. Inst. Math. Acad. Sinica 13 (1985), 123-136 Zbl0584.32051MR805014
- J. Y. Chemin, Calcul paradifférentiel précisé et applications à des équations aux dérivées partielles non semilinéaires, Duke Math. J. 56 (1988), 431-469 Zbl0676.35009MR948529
- M. G. Eastwood, C. R. Graham, Edge of the wedge theory in hypo-analytic manifolds, Commun. Partial Differ. Equations 28 (2003), 2003-2028 Zbl1063.32009MR2015410
- N. Hanges, F. Treves, On the analyticity of solutions of first order nonlinear PDE, Trans. Amer. Math. Soc. 331 (1992), 627-638 Zbl0758.35018MR1061776
- A. A. Himonas, On analytic microlocal hypoellipticity of linear partial differential operators of principal type, Commun. Partial Differ. Equations 11 (1986), 1539-1574 Zbl0622.35013MR864417
- A. A. Himonas, Semirigid partial differential operators and microlocal analytic hypoellipticity, Duke Math. J. 59 (1989), 265-287 Zbl0719.35019MR1016887
- R. Kenyon, A. Okounkov, Dimers, the complex Burger’s equation and curves inscribed in polygons Zbl1100.14047
- R. Kenyon, A. Okounkov, Limit shapes and the complex Burger’s equation Zbl1156.14029
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.