On microlocal analyticity of solutions of first-order nonlinear PDE

Shif Berhanu[1]

  • [1] Temple University Department of Mathematics Philadelphia, PA 19122 (USA)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 4, page 1267-1290
  • ISSN: 0373-0956

Abstract

top
We study the microlocal analyticity of solutions u of the nonlinear equation u t = f ( x , t , u , u x ) where f ( x , t , ζ 0 , ζ ) is complex-valued, real analytic in all its arguments and holomorphic in ( ζ 0 , ζ ) . We show that if the function u is a C 2 solution, σ Char L u and 1 i σ ( [ L u , L u ¯ ] ) < 0 or if u is a C 3 solution, σ Char L u , σ ( [ L u , L u ¯ ] ) = 0 , and σ ( [ L u , [ L u , L u ¯ ] ] ) 0 , then σ W F a u . Here W F a u denotes the analytic wave-front set of u and Char L u is the characteristic set of the linearized operator. When m = 1 , we prove a more general result involving the repeated brackets of L u and L u ¯ of any order.

How to cite

top

Berhanu, Shif. "On microlocal analyticity of solutions of first-order nonlinear PDE." Annales de l’institut Fourier 59.4 (2009): 1267-1290. <http://eudml.org/doc/10427>.

@article{Berhanu2009,
abstract = {We study the microlocal analyticity of solutions $u$ of the nonlinear equation\[ u\_\{t\} = f(x, t, u, u\_\{x\}) \]where $f(x, t,\zeta _\{0\}, \zeta )$ is complex-valued, real analytic in all its arguments and holomorphic in $(\zeta _\{0\}, \zeta )$. We show that if the function $u$ is a $C^2$ solution, $\sigma \in \text\{Char\}\,L^\{u\}$ and $\frac\{1\}\{i\}\sigma ([L^\{u\}, \overline\{L^u\}]) &lt; 0$ or if $u$ is a $C^3$ solution, $\sigma \in \text\{Char\}\,L^\{u\}$, $\sigma ([L^\{u\}, \overline\{L^u\}]) = 0$, and $ \sigma ([L^u,[L^\{u\},\overline\{L^u\}]]) \ne 0$, then $\sigma \notin WF_\{a\}u$. Here $WF_\{a\}u $ denotes the analytic wave-front set of $u$ and Char$\,L^u$ is the characteristic set of the linearized operator. When $m=1$, we prove a more general result involving the repeated brackets of $L^u$ and $\overline\{L^u\}$ of any order.},
affiliation = {Temple University Department of Mathematics Philadelphia, PA 19122 (USA)},
author = {Berhanu, Shif},
journal = {Annales de l’institut Fourier},
keywords = {Analytic wave-front set; linearized operator; analytic wave-front set},
language = {eng},
number = {4},
pages = {1267-1290},
publisher = {Association des Annales de l’institut Fourier},
title = {On microlocal analyticity of solutions of first-order nonlinear PDE},
url = {http://eudml.org/doc/10427},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Berhanu, Shif
TI - On microlocal analyticity of solutions of first-order nonlinear PDE
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 4
SP - 1267
EP - 1290
AB - We study the microlocal analyticity of solutions $u$ of the nonlinear equation\[ u_{t} = f(x, t, u, u_{x}) \]where $f(x, t,\zeta _{0}, \zeta )$ is complex-valued, real analytic in all its arguments and holomorphic in $(\zeta _{0}, \zeta )$. We show that if the function $u$ is a $C^2$ solution, $\sigma \in \text{Char}\,L^{u}$ and $\frac{1}{i}\sigma ([L^{u}, \overline{L^u}]) &lt; 0$ or if $u$ is a $C^3$ solution, $\sigma \in \text{Char}\,L^{u}$, $\sigma ([L^{u}, \overline{L^u}]) = 0$, and $ \sigma ([L^u,[L^{u},\overline{L^u}]]) \ne 0$, then $\sigma \notin WF_{a}u$. Here $WF_{a}u $ denotes the analytic wave-front set of $u$ and Char$\,L^u$ is the characteristic set of the linearized operator. When $m=1$, we prove a more general result involving the repeated brackets of $L^u$ and $\overline{L^u}$ of any order.
LA - eng
KW - Analytic wave-front set; linearized operator; analytic wave-front set
UR - http://eudml.org/doc/10427
ER -

References

top
  1. A. Asano, On the C wave-front set of solutions of first order nonlinear pde’s, Proc. Amer. Math. Soc. 123 (1995), 3009-3019 Zbl0848.35024MR1264801
  2. M. S. Baouendi, C. H. Chang, F. Treves, Microlocal hypo-analyticity and extension of CR functions, J. Differential Geometry 18 (1983), 331-391 Zbl0575.32019MR723811
  3. D. Chae, A. Cordoba, D. Cordoba, M. Fontelos, Finite time singularities in a 1D model of the quasi-geostrophic equation, Advances in Mathematics 194 (2005), 203-223 Zbl1128.76372MR2141858
  4. C. H. Chang, Hypo-analyticity with vanishing Levi form, Bull. Inst. Math. Acad. Sinica 13 (1985), 123-136 Zbl0584.32051MR805014
  5. J. Y. Chemin, Calcul paradifférentiel précisé et applications à des équations aux dérivées partielles non semilinéaires, Duke Math. J. 56 (1988), 431-469 Zbl0676.35009MR948529
  6. M. G. Eastwood, C. R. Graham, Edge of the wedge theory in hypo-analytic manifolds, Commun. Partial Differ. Equations 28 (2003), 2003-2028 Zbl1063.32009MR2015410
  7. N. Hanges, F. Treves, On the analyticity of solutions of first order nonlinear PDE, Trans. Amer. Math. Soc. 331 (1992), 627-638 Zbl0758.35018MR1061776
  8. A. A. Himonas, On analytic microlocal hypoellipticity of linear partial differential operators of principal type, Commun. Partial Differ. Equations 11 (1986), 1539-1574 Zbl0622.35013MR864417
  9. A. A. Himonas, Semirigid partial differential operators and microlocal analytic hypoellipticity, Duke Math. J. 59 (1989), 265-287 Zbl0719.35019MR1016887
  10. R. Kenyon, A. Okounkov, Dimers, the complex Burger’s equation and curves inscribed in polygons Zbl1100.14047
  11. R. Kenyon, A. Okounkov, Limit shapes and the complex Burger’s equation Zbl1156.14029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.