A generalization of the radiation condition of Sommerfeld for -body Schrödinger operators
Let be a linear partial differential operator with analytic coefficients. We assume that is of the form “sum of squares”, satisfying Hörmander’s bracket condition. Let be a characteristic point for . We assume that lies on a symplectic Poisson stratum of codimension two. General results of Okaji show that is analytic hypoelliptic at . Hence Okaji has established the validity of Treves’ conjecture in the codimension two case. Our goal here is to give a simple, self-contained proof of...
Let be a closed set of , whose conormai cones , , have locally empty intersection. We first show in §1 that , is a function. We then represent the n microfunctions of , , using cohomology groups of of degree 1. By the results of § 1-3, we are able to prove in §4 that the sections of , , satisfy the principle of the analytic continuation in the complex integral manifolds of , being a base for the linear hull of in ; in particular we get . When is a half space with -boundary,...
Several situations of physical importance may be modelled by linear quantum fields propagating in fixed spacetime-dependent classical background fields. For example, the quantum Dirac field in a strong and/or time-dependent external electromagnetic field accounts for the creation of electron-positron pairs out of the vacuum. Also, the theory of linear quantum fields propagating on a given background curved spacetime is the appropriate framework for the derivation of black-hole evaporation (Hawking...