Euler schemes and half-space approximation for the simulation of diffusion in a domain

Emmanuel Gobet

ESAIM: Probability and Statistics (2001)

  • Volume: 5, page 261-297
  • ISSN: 1292-8100

Abstract

top
This paper is concerned with the problem of simulation of ( X t ) 0 t T , the solution of a stochastic differential equation constrained by some boundary conditions in a smooth domain D : namely, we consider the case where the boundary D is killing, or where it is instantaneously reflecting in an oblique direction. Given N discretization times equally spaced on the interval [ 0 , T ] , we propose new discretization schemes: they are fully implementable and provide a weak error of order N - 1 under some conditions. The construction of these schemes is based on a natural principle of local approximation of the domain into a half space, for which efficient simulations are available.

How to cite

top

Gobet, Emmanuel. "Euler schemes and half-space approximation for the simulation of diffusion in a domain." ESAIM: Probability and Statistics 5 (2001): 261-297. <http://eudml.org/doc/104277>.

@article{Gobet2001,
abstract = {This paper is concerned with the problem of simulation of $(X_t)_\{0\le t\le T\}$, the solution of a stochastic differential equation constrained by some boundary conditions in a smooth domain $D$: namely, we consider the case where the boundary $\partial D$ is killing, or where it is instantaneously reflecting in an oblique direction. Given $N$ discretization times equally spaced on the interval $[0,T]$, we propose new discretization schemes: they are fully implementable and provide a weak error of order $N^\{-1\}$ under some conditions. The construction of these schemes is based on a natural principle of local approximation of the domain into a half space, for which efficient simulations are available.},
author = {Gobet, Emmanuel},
journal = {ESAIM: Probability and Statistics},
keywords = {killed diffusion; reflected diffusion; discretization schemes; rates of convergence; weak approximation; boundary value problems for parabolic PDE; boundary value problems for parabolic partial differential equations},
language = {eng},
pages = {261-297},
publisher = {EDP-Sciences},
title = {Euler schemes and half-space approximation for the simulation of diffusion in a domain},
url = {http://eudml.org/doc/104277},
volume = {5},
year = {2001},
}

TY - JOUR
AU - Gobet, Emmanuel
TI - Euler schemes and half-space approximation for the simulation of diffusion in a domain
JO - ESAIM: Probability and Statistics
PY - 2001
PB - EDP-Sciences
VL - 5
SP - 261
EP - 297
AB - This paper is concerned with the problem of simulation of $(X_t)_{0\le t\le T}$, the solution of a stochastic differential equation constrained by some boundary conditions in a smooth domain $D$: namely, we consider the case where the boundary $\partial D$ is killing, or where it is instantaneously reflecting in an oblique direction. Given $N$ discretization times equally spaced on the interval $[0,T]$, we propose new discretization schemes: they are fully implementable and provide a weak error of order $N^{-1}$ under some conditions. The construction of these schemes is based on a natural principle of local approximation of the domain into a half space, for which efficient simulations are available.
LA - eng
KW - killed diffusion; reflected diffusion; discretization schemes; rates of convergence; weak approximation; boundary value problems for parabolic PDE; boundary value problems for parabolic partial differential equations
UR - http://eudml.org/doc/104277
ER -

References

top
  1. [1] P. Baldi, Exact asymptotics for the probability of exit from a domain and applications to simulation. Ann. Probab. 23 (1995) 1644-1670. Zbl0856.60033MR1379162
  2. [2] P. Baldi, L. Caramellino and M.G. Iovino, Pricing complex barrier options with general features using sharp large deviation estimates, edited by Niederreiter, Harald et al., Monte-Carlo and quasi-Monte-Carlo methods 1998, in Proc. of a conference held at the Claremont Graduate University. Claremont, CA, USA, June 22-26, 1998. Springer, Berlin (2000) 149-162. Zbl0937.91062MR1849848
  3. [3] V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations: I. Convergence rate of the distribution function. Probab. Theory Related Fields 104-1 (1996) 43-60. Zbl0838.60051MR1367666
  4. [4] M. Bossy, E. Gobet and D. Talay, Computation of the invariant law of a reflected diffusion process (in preparation). 
  5. [5] P. Cattiaux, Hypoellipticité et hypoellipticité partielle pour les diffusions avec une condition frontière. Ann. Inst. H. Poincaré Probab. Statist. 22 (1986) 67-112. Zbl0595.60059MR838373
  6. [6] P. Cattiaux, Régularité au bord pour les densités et les densités conditionnelles d’une diffusion réfléchie hypoelliptique. Stochastics 20 (1987) 309-340. Zbl0637.60092
  7. [7] C. Constantini, B. Pacchiarotti and F. Sartoretto, Numerical approximation for functionnals of reflecting diffusion processes. SIAM J. Appl. Math. 58 (1998) 73-102. Zbl0913.60031MR1610029
  8. [8] O. Faugeras, F. Clément, R. Deriche, R. Keriven, T. Papadopoulo, J. Roberts, T. Viéville, F. Devernay, J. Gomes, G. Hermosillo, P. Kornprobst and D. Lingrand, The inverse EEG and MEG problems: The adjoint state approach. I. The continuous case. Rapport de recherche INRIA No. 3673 (1999). 
  9. [9] M. Freidlin, Functional integration and partial differential equations. Ann. of Math. Stud. Princeton University Press (1985). Zbl0568.60057MR833742
  10. [10] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Springer Verlag (1977). Zbl0361.35003MR473443
  11. [11] E. Gobet, Schémas d’Euler pour diffusion tuée. Application aux options barrière, Ph.D. Thesis. Université Denis Diderot Paris 7 (1998). 
  12. [12] E. Gobet, Euler schemes for the weak approximation of killed diffusion. Stochastic Process. Appl. 87 (2000) 167-197. Zbl1045.60082MR1757112
  13. [13] E. Gobet, Efficient schemes for the weak approximation of reflected diffusions. Monte Carlo Methods Appl. 7 (2001) 193-202. Monte Carlo and probabilistic methods for partial differential equations. Monte Carlo (2000). Zbl0986.65002MR1828209
  14. [14] E. Hausenblas, A numerical scheme using excursion theory for simulating stochastic differential equations with reflection and local time at a boundary. Monte Carlo Methods Appl. 6 (2000) 81-103. Zbl0960.65009MR1773371
  15. [15] S. Kanagawa and Y. Saisho, Strong approximation of reflecting Brownian motion using penalty method and its application to computer simulation. Monte Carlo Methods Appl. 6 (2000) 105-114. Zbl0963.65005MR1773372
  16. [16] S. Kusuoka and D. Stroock, Applications of the Malliavin calculus I, edited by K. Itô, Stochastic Analysis, in Proc. Taniguchi Internatl. Symp. Katata and Kyoto 1982. Kinokuniya, Tokyo (1984) 271-306. Zbl0546.60056MR780762
  17. [17] O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural’ceva, Linear and quasi-linear equations of parabolic type. Amer. Math. Soc., Providence, Transl. Math. Monogr. 23 (1968). Zbl0174.15403
  18. [18] D. Lépingle, Un schéma d’Euler pour équations différentielles stochastiques réfléchies. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993) 601-605. Zbl0771.60046
  19. [19] D. Lépingle, Euler scheme for reflected stochastic differential equations. Math. Comput. Simulation 38 (1995) 119-126. Zbl0824.60062MR1341164
  20. [20] P.L. Lions and A.S. Sznitman, Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math. 37 (1984) 511-537. Zbl0598.60060MR745330
  21. [21] Y. Liu, Numerical approaches to reflected diffusion processes. Technical Report (1993). 
  22. [22] J.L. Menaldi, Stochastic variational inequality for reflected diffusion. Indiana Univ. Math. J. 32 (1983) 733-744. Zbl0492.60057MR711864
  23. [23] G.N. Milshtein, Application of the numerical integration of stochastic equations for the solution of boundary value problems with Neumann boundary conditions. Theory Probab. Appl. 41 (1996) 170-177. Zbl0888.60050MR1404908
  24. [24] C. Miranda, Partial differential equations of elliptic type. Springer, New York (1970). Zbl0198.14101MR284700
  25. [25] E. Pardoux and R.J. Williams, Symmetric reflected diffusions. Ann. Inst. H. Poincaré Probab. Statist. 30 (1994) 13-62. Zbl0794.60078MR1262891
  26. [26] R. Pettersson, Approximations for stochastic differential equations with reflecting convex boundaries. Stochastic Process. Appl. 59 (1995) 295-308. Zbl0841.60042MR1357657
  27. [27] R. Pettersson, Penalization schemes for reflecting stochastic differential equations. Bernoulli 3 (1997) 403-414. Zbl0899.60053MR1483695
  28. [28] D. Revuz and M. Yor, Continuous martingales and Brownian motion, 2nd Ed. Springer, Berlin, Grundlehren Math. Wiss. 293 (1994). Zbl0804.60001MR1303781
  29. [29] Y. Saisho, Stochastic differential equations for multi-dimensional domain with reflecting boundary. Probab. Theory Related Fields 74 (1987) 455-477. Zbl0591.60049MR873889
  30. [30] J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables. Philos. Trans. Roy. Soc. London Ser. A 264 (1969) 413-496. Zbl0181.38003MR282058
  31. [31] L. Slomiński, On approximation of solutions of multidimensional SDEs with reflecting boundary conditions. Stochastic Process. Appl. 50 (1994) 197-219. Zbl0799.60055MR1273770
  32. [32] D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal. Appl. 8-4 (1990) 94-120. Zbl0718.60058MR1091544
  33. [33] R.J. Williams, Semimartingale reflecting Brownian motions in the orthant, Stochastic networks. Springer, New York (1995) 125-137. Zbl0827.60031MR1381009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.