Interacting Brownian particles and Gibbs fields on pathspaces
ESAIM: Probability and Statistics (2010)
- Volume: 7, page 251-277
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topDereudre, David. "Interacting Brownian particles and Gibbs fields on pathspaces." ESAIM: Probability and Statistics 7 (2010): 251-277. <http://eudml.org/doc/104308>.
@article{Dereudre2010,
abstract = {
In this paper, we prove that the laws of interacting Brownian particles
are characterized as Gibbs fields on pathspace associated to an
explicit class of
Hamiltonian functionals. More generally, we show that a large class of Gibbs
fields on pathspace corresponds to Brownian diffusions. Some applications to
time reversal in the stationary and non stationary case are presented.
},
author = {Dereudre, David},
journal = {ESAIM: Probability and Statistics},
keywords = {Point measure on pathspace; Gibbs field; interacting Brownian
particles; integration by parts formula; Campbell measure.; point measure on pathspace; interacting Brownian particles; Campbell measure},
language = {eng},
month = {3},
pages = {251-277},
publisher = {EDP Sciences},
title = {Interacting Brownian particles and Gibbs fields on pathspaces},
url = {http://eudml.org/doc/104308},
volume = {7},
year = {2010},
}
TY - JOUR
AU - Dereudre, David
TI - Interacting Brownian particles and Gibbs fields on pathspaces
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 7
SP - 251
EP - 277
AB -
In this paper, we prove that the laws of interacting Brownian particles
are characterized as Gibbs fields on pathspace associated to an
explicit class of
Hamiltonian functionals. More generally, we show that a large class of Gibbs
fields on pathspace corresponds to Brownian diffusions. Some applications to
time reversal in the stationary and non stationary case are presented.
LA - eng
KW - Point measure on pathspace; Gibbs field; interacting Brownian
particles; integration by parts formula; Campbell measure.; point measure on pathspace; interacting Brownian particles; Campbell measure
UR - http://eudml.org/doc/104308
ER -
References
top- S. Albeverio, Yu.G. Kondratiev and M. Röckner, Analysis and geometry on configuration spaces: The Gibbsian case. J. Funct. Anal.157 (1998) 242-291.
- S. Albeverio, M. Röckner and T.S. Zhang, Markov uniqueness for a class of infinite dimensional Dirichlet operators. Stochastic Process. Optimal Control, Stochastics Monogr. 7 (1993) 1-26.
- P. Cattiaux, S. Rœlly and H. Zessin, Une approche gibbsienne des diffusions browniennes infini-dimensionnelles. Probab. Theory Related Fields104-2 (1996) 223-248.
- P. Dai Pra, S. Rœlly and H. Zessin, A Gibbs variational principle in space-time for infinite-dimensional diffusions. Probab. Theory Related Fields122 (2002) 289-315.
- D. Dereudre, Une caractérisation de champs de Gibbs canoniques sur et . C. R. Acad. Sci. Paris Sér. I335 (2002) 177-182.
- D. Dereudre, Diffusions infini-dimensionnelles et champs de Gibbs sur l'espace des trajectoires continues . Thèse soutenue à l'École Polytechnique (2002).
- J.D. Deuschel, Infinite dimensionnal diffusion processes as Gibbs measures on . Probab. Theory Related Fields76 (1987) 325-340.
- R.L. Dobrushin and J. Fritz, Non-equilibrium dynamics of one-dimensional infinite particle systems with a hard-core interaction. Comm. Math. Phys.55 (1977) 275-292.
- H. Föllmer, Time reversal on Wiener space. Springer-Verlag, Lecture Notes in Math. 1158 (1986) 117-129.
- H. Föllmer and A. Wakolbinger, Time reversal of infinite-dimensional diffusions. Stochastic Process. Appl.22 (1986) 59-77.
- M. Fradon, S. Roelly and H. Tanemura, An infinite system of Brownian balls with infinite range interaction. Stochastic Process. Appl.90-1 (2000) 43-66.
- J. Fritz, Gradient dynamics of infinite point systems. Ann. Probab.15 (1987) 487-514.
- J. Fritz and R.L. Dobrushin, Non-equilibrium dynamics of two-dimensional infinite particle systems with a singular interaction. Comm. Math. Phys.57 (1977) 67-81.
- J. Fritz, S. Rœlly and H. Zessin, Stationary states of interacting Brownian motions. Stud. Sci. Math. Hung.34 (1998) 151-164.
- B. Gaveau and P. Trauber, L'intégrale stochastique comme opérateur de divergence dans l'espace fonctionnel. J. Funct. Anal.46 (1996) 230-238.
- H.-O. Georgii, Canonical Gibbs measures. Springer, Lecture Notes in Math. 760 (1979).
- H.-O. Georgii, Equilibria for particle motions: Conditionally balanced point random fields, Exchangeability in Probability and Statistics, edited by Koch, Spizzichino. North Holland (1982) 265-280.
- E. Glötzl, Gibbsian description of point processes, in Colloquia Mathematica Societatis Janos Bolyai, 24 keszthely. Hungary (1978) 69-84.
- E. Glötzl, Lokale Energien und Potentiale für Punktprozesse. Math. Nach.96 (1980) 195-206.
- J. Jacod, Calcul stochastique et problèmes de matingales. Springer, Lecture Notes in Math. 714 (1979).
- R. Lang, Unendlich-dimensionale Wienerprozesse mit Wechselwirkung I. Z. Wahrsch. Verw. Gebiete38 (1977) 55-72.
- R. Lang, Unendlich-dimensionale Wienerprozesse mit Wechselwirkung II. Z. Wahrsch. Verw. Gebiete39 (1977) 277-299.
- K. Matthes, J. Kerstan and J. Mecke, Infinitely Divisible Point Process. J. Wiley (1978).
- A. Millet, D. Nualart and M. Sanz, Time Reversal for infinite-dimensional diffusions. Probab. Theory Related Fields82 (1989) 315-347.
- R.A. Minlos, S. Rœlly and H. Zessin, Gibbs states on space-time. Potential Anal.13 (2000) 367-408.
- X.X. Nguyen and H. Zessin, Integral and differential characterizations of the Gibbs process. Math. Nach.88 (1979) 105-115.
- C. Preston, Random fields. Springer, Lecture Notes in Math. 714 (1976).
- N. Privault, A characterization of grand canonical Gibbs measures by duality. Potential Anal.15 (2001) 23-28.
- B. Rauchenschwandtner and A. Wakolbinger, Some aspects of the Papangelou kernel, in Colloquia mathematica societatis Janos Bolyai, 24 keszthely. Hungary (1978) 325-336.
- S. Rœlly and H. Zessin, Une caractérisation de champs gibbsiens sur un espace de trajectoires. C. R. Acad. Sci. Paris Sér. I321 (1995) 1377-1382.
- D. Ruelle, Statistical Mechanics. Rigorous Results.. Benjamin, New York (1969) .
- D. Ruelle, Superstable interactions in classical statistical mechanics. Comm. Math. Phys.18 (1970) 127-159.
- M. Yoshida, Construction of infinite dimensional interacting diffusion processes through Dirichlet forms. Probab. Theory Related Fields106 (1996) 265-297.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.