Interacting Brownian particles and Gibbs fields on pathspaces

David Dereudre

ESAIM: Probability and Statistics (2010)

  • Volume: 7, page 251-277
  • ISSN: 1292-8100

Abstract

top
In this paper, we prove that the laws of interacting Brownian particles are characterized as Gibbs fields on pathspace associated to an explicit class of Hamiltonian functionals. More generally, we show that a large class of Gibbs fields on pathspace corresponds to Brownian diffusions. Some applications to time reversal in the stationary and non stationary case are presented.

How to cite

top

Dereudre, David. "Interacting Brownian particles and Gibbs fields on pathspaces." ESAIM: Probability and Statistics 7 (2010): 251-277. <http://eudml.org/doc/104308>.

@article{Dereudre2010,
abstract = { In this paper, we prove that the laws of interacting Brownian particles are characterized as Gibbs fields on pathspace associated to an explicit class of Hamiltonian functionals. More generally, we show that a large class of Gibbs fields on pathspace corresponds to Brownian diffusions. Some applications to time reversal in the stationary and non stationary case are presented. },
author = {Dereudre, David},
journal = {ESAIM: Probability and Statistics},
keywords = {Point measure on pathspace; Gibbs field; interacting Brownian particles; integration by parts formula; Campbell measure.; point measure on pathspace; interacting Brownian particles; Campbell measure},
language = {eng},
month = {3},
pages = {251-277},
publisher = {EDP Sciences},
title = {Interacting Brownian particles and Gibbs fields on pathspaces},
url = {http://eudml.org/doc/104308},
volume = {7},
year = {2010},
}

TY - JOUR
AU - Dereudre, David
TI - Interacting Brownian particles and Gibbs fields on pathspaces
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 7
SP - 251
EP - 277
AB - In this paper, we prove that the laws of interacting Brownian particles are characterized as Gibbs fields on pathspace associated to an explicit class of Hamiltonian functionals. More generally, we show that a large class of Gibbs fields on pathspace corresponds to Brownian diffusions. Some applications to time reversal in the stationary and non stationary case are presented.
LA - eng
KW - Point measure on pathspace; Gibbs field; interacting Brownian particles; integration by parts formula; Campbell measure.; point measure on pathspace; interacting Brownian particles; Campbell measure
UR - http://eudml.org/doc/104308
ER -

References

top
  1. S. Albeverio, Yu.G. Kondratiev and M. Röckner, Analysis and geometry on configuration spaces: The Gibbsian case. J. Funct. Anal.157 (1998) 242-291.  
  2. S. Albeverio, M. Röckner and T.S. Zhang, Markov uniqueness for a class of infinite dimensional Dirichlet operators. Stochastic Process. Optimal Control, Stochastics Monogr. 7 (1993) 1-26.  
  3. P. Cattiaux, S. Rœlly and H. Zessin, Une approche gibbsienne des diffusions browniennes infini-dimensionnelles. Probab. Theory Related Fields104-2 (1996) 223-248.  
  4. P. Dai Pra, S. Rœlly and H. Zessin, A Gibbs variational principle in space-time for infinite-dimensional diffusions. Probab. Theory Related Fields122 (2002) 289-315.  
  5. D. Dereudre, Une caractérisation de champs de Gibbs canoniques sur d et 𝒞 ( [ 0 , 1 ] , d ) . C. R. Acad. Sci. Paris Sér. I335 (2002) 177-182.  
  6. D. Dereudre, Diffusions infini-dimensionnelles et champs de Gibbs sur l'espace des trajectoires continues 𝒞 ( [ 0 , 1 ) ; d ) . Thèse soutenue à l'École Polytechnique (2002).  
  7. J.D. Deuschel, Infinite dimensionnal diffusion processes as Gibbs measures on C [ 0 , 1 ] d . Probab. Theory Related Fields76 (1987) 325-340.  
  8. R.L. Dobrushin and J. Fritz, Non-equilibrium dynamics of one-dimensional infinite particle systems with a hard-core interaction. Comm. Math. Phys.55 (1977) 275-292.  
  9. H. Föllmer, Time reversal on Wiener space. Springer-Verlag, Lecture Notes in Math. 1158 (1986) 117-129.  
  10. H. Föllmer and A. Wakolbinger, Time reversal of infinite-dimensional diffusions. Stochastic Process. Appl.22 (1986) 59-77.  
  11. M. Fradon, S. Roelly and H. Tanemura, An infinite system of Brownian balls with infinite range interaction. Stochastic Process. Appl.90-1 (2000) 43-66.  
  12. J. Fritz, Gradient dynamics of infinite point systems. Ann. Probab.15 (1987) 487-514.  
  13. J. Fritz and R.L. Dobrushin, Non-equilibrium dynamics of two-dimensional infinite particle systems with a singular interaction. Comm. Math. Phys.57 (1977) 67-81.  
  14. J. Fritz, S. Rœlly and H. Zessin, Stationary states of interacting Brownian motions. Stud. Sci. Math. Hung.34 (1998) 151-164.  
  15. B. Gaveau and P. Trauber, L'intégrale stochastique comme opérateur de divergence dans l'espace fonctionnel. J. Funct. Anal.46 (1996) 230-238.  
  16. H.-O. Georgii, Canonical Gibbs measures. Springer, Lecture Notes in Math. 760 (1979).  
  17. H.-O. Georgii, Equilibria for particle motions: Conditionally balanced point random fields, Exchangeability in Probability and Statistics, edited by Koch, Spizzichino. North Holland (1982) 265-280.  
  18. E. Glötzl, Gibbsian description of point processes, in Colloquia Mathematica Societatis Janos Bolyai, 24 keszthely. Hungary (1978) 69-84.  
  19. E. Glötzl, Lokale Energien und Potentiale für Punktprozesse. Math. Nach.96 (1980) 195-206.  
  20. J. Jacod, Calcul stochastique et problèmes de matingales. Springer, Lecture Notes in Math. 714 (1979).  
  21. R. Lang, Unendlich-dimensionale Wienerprozesse mit Wechselwirkung I. Z. Wahrsch. Verw. Gebiete38 (1977) 55-72.  
  22. R. Lang, Unendlich-dimensionale Wienerprozesse mit Wechselwirkung II. Z. Wahrsch. Verw. Gebiete39 (1977) 277-299.  
  23. K. Matthes, J. Kerstan and J. Mecke, Infinitely Divisible Point Process. J. Wiley (1978).  
  24. A. Millet, D. Nualart and M. Sanz, Time Reversal for infinite-dimensional diffusions. Probab. Theory Related Fields82 (1989) 315-347.  
  25. R.A. Minlos, S. Rœlly and H. Zessin, Gibbs states on space-time. Potential Anal.13 (2000) 367-408.  
  26. X.X. Nguyen and H. Zessin, Integral and differential characterizations of the Gibbs process. Math. Nach.88 (1979) 105-115.  
  27. C. Preston, Random fields. Springer, Lecture Notes in Math. 714 (1976).  
  28. N. Privault, A characterization of grand canonical Gibbs measures by duality. Potential Anal.15 (2001) 23-28.  
  29. B. Rauchenschwandtner and A. Wakolbinger, Some aspects of the Papangelou kernel, in Colloquia mathematica societatis Janos Bolyai, 24 keszthely. Hungary (1978) 325-336.  
  30. S. Rœlly and H. Zessin, Une caractérisation de champs gibbsiens sur un espace de trajectoires. C. R. Acad. Sci. Paris Sér. I321 (1995) 1377-1382.  
  31. D. Ruelle, Statistical Mechanics. Rigorous Results.. Benjamin, New York (1969) .  
  32. D. Ruelle, Superstable interactions in classical statistical mechanics. Comm. Math. Phys.18 (1970) 127-159.  
  33. M. Yoshida, Construction of infinite dimensional interacting diffusion processes through Dirichlet forms. Probab. Theory Related Fields106 (1996) 265-297.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.