Asymptotics for the Lp-deviation of the variance estimator under diffusion
ESAIM: Probability and Statistics (2010)
- Volume: 8, page 132-149
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topDoukhan, Paul, and León, José R.. "Asymptotics for the Lp-deviation of the variance estimator under diffusion." ESAIM: Probability and Statistics 8 (2010): 132-149. <http://eudml.org/doc/104315>.
@article{Doukhan2010,
abstract = {
We consider a diffusion process Xt smoothed with (small)
sampling parameter ε. As in Berzin, León and Ortega
(2001), we consider a kernel estimate
$\widehat\{\alpha\}_\{\varepsilon\}$ with window h(ε) of a
function α of its variance. In order to exhibit global
tests of hypothesis, we derive here central limit theorems for
the Lp deviations such as
\[
\frac1\{\sqrt\{h\}\}\left(\frac\{h\}\varepsilon\right)^\{\frac\{p\}2\}\left(
\left\|\widehat\{\alpha\}\_\{\varepsilon\}-\{\alpha\}\right\|\_p^p-
\mbox\{I E\}\left\|\widehat\{\alpha\}\_\{\varepsilon\}-\{\alpha\}\right\|\_p^p
\right).
\]},
author = {Doukhan, Paul, León, José R.},
journal = {ESAIM: Probability and Statistics},
keywords = {Variance estimator; kernel; Lp-deviation; central limit theorem.; -deviation; central limit theorem},
language = {eng},
month = {3},
pages = {132-149},
publisher = {EDP Sciences},
title = {Asymptotics for the Lp-deviation of the variance estimator under diffusion},
url = {http://eudml.org/doc/104315},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Doukhan, Paul
AU - León, José R.
TI - Asymptotics for the Lp-deviation of the variance estimator under diffusion
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 8
SP - 132
EP - 149
AB -
We consider a diffusion process Xt smoothed with (small)
sampling parameter ε. As in Berzin, León and Ortega
(2001), we consider a kernel estimate
$\widehat{\alpha}_{\varepsilon}$ with window h(ε) of a
function α of its variance. In order to exhibit global
tests of hypothesis, we derive here central limit theorems for
the Lp deviations such as
\[
\frac1{\sqrt{h}}\left(\frac{h}\varepsilon\right)^{\frac{p}2}\left(
\left\|\widehat{\alpha}_{\varepsilon}-{\alpha}\right\|_p^p-
\mbox{I E}\left\|\widehat{\alpha}_{\varepsilon}-{\alpha}\right\|_p^p
\right).
\]
LA - eng
KW - Variance estimator; kernel; Lp-deviation; central limit theorem.; -deviation; central limit theorem
UR - http://eudml.org/doc/104315
ER -
References
top- J. Beirlant and D.M. Mason, On the asymptotic normality of the Lp-norm of empirical functional. Math. Methods Statist.4 (1995) 1–19. Zbl0831.62019
- C. Berzin-Joseph, J.R. León and J. Ortega, Non-linear functionals of the Brownian bridge and some applications. Stoch. Proc. Appl.92 (2001) 11–30. Zbl1047.60082
- P. Brugière, Théorème de limite centrale pour un estimateur non paramétrique de la variance d'un processus de diffusion multidimensionnelle. Ann. Inst. Henri Poincaré, Probab. Stat.29 (1993) 357–389.
- P.D. Ditlevsen, S. Ditlevsen and K.K. Andersen, The fast climate fluctuations during the stadial and interstadial climate states. Ann. Glaciology35 (2002).
- P. Doukhan, J.R. León and F. Portal, Calcul de la vitesse de convergence dans le théorème central limite vis-à-vis des distances de Prohorov, Dudley et Lévy dans le cas de v. a. dépendantes. Probab. Math. Statist.6 (1985) 19–27. Zbl0607.60019
- V. Genon-Catalot, C. Laredo and D. Picard, Non-parametric estimation of the diffusion coefficient by wavelets methods. Scand. J. Statist.19 (1992) 317–335. Zbl0776.62033
- I.J. Gihman and A.V. Skorohov, Stochastic differential equations. Springer-Verlag, Berlin, New York (1972).
- E. Giné, D. Mason and Yu. Zaitsev, The L1-norm density estimator process. To appear in Ann. Prob. Zbl1031.62026
- A. Gloter, Parameter estimation for a discrete sampling of an integrated Ornstein-Uhlenbeck process. Statistics35 (2000) 225–243. Zbl0980.62072
- J. Jacod, On continuous conditional martingales and stable convergence in law, sémin. Probab. XXXI, LNM 1655, Springer (1997) 232–246. Zbl0884.60038
- P. Major, Multiple Wiener-Itô integrals. Springer-Verlag, New York, Lect. Notes Math.849 (1981). Zbl0451.60002
- G. Perera and M. Wschebor, Crossings and occupation measures for a class of semimartingales. Ann. Probab.26 (1998) 253–266. Zbl0943.60019
- G. Perera and M. Wschebor, Inference on the variance and smoothing of the paths of diffusions. Ann. Inst. Henri Poincaré, Probab. Stat.38 (2002) 1009–1022. Zbl1011.62083
- E. Rio, About the Lindeberg method for strongly mixing sequences. ESAIM: PS1 (1995) 35–61. Zbl0869.60021
- H.P. Rosenthal, On the subspaces of Lp, (p > 2) spanned by sequences of independent random variables. Israël Jour. Math.8 (1970) 273–303. Zbl0213.19303
- V.V. Shergin, On the convergence rate in the central limit theorem for m-dependent random variables. Theor. Proba. Appl.24 (1979) 782–796. Zbl0447.60023
- P. Soulier, Non-parametric estimation of the diffusion coefficient of a diffusion process. Stoch. Anal. Appl.16 (1998) 185–200. Zbl0894.62093
- G. Terdik, Bilinear Stochastic Models and Related problems of Nonlinear Time Series. Springer-Verlag, New York, Lect. Notes Statist.142 (1999). Zbl0928.62068
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.