On the infinite time horizon linear-quadratic regulator problem under a fractional Brownian perturbation
Marina L. Kleptsyna; Alain Le Breton; Michel Viot
ESAIM: Probability and Statistics (2010)
- Volume: 9, page 185-205
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topKleptsyna, Marina L., Le Breton, Alain, and Viot, Michel. "On the infinite time horizon linear-quadratic regulator problem under a fractional Brownian perturbation." ESAIM: Probability and Statistics 9 (2010): 185-205. <http://eudml.org/doc/104329>.
@article{Kleptsyna2010,
abstract = {
In this paper we solve the basic fractional
analogue of the classical infinite time horizon linear-quadratic Gaussian
regulator problem. For a completely observable controlled linear
system driven by a fractional Brownian motion, we describe
explicitely the optimal control policy which minimizes an
asymptotic quadratic performance criterion.
},
author = {Kleptsyna, Marina L., Le Breton, Alain, Viot, Michel},
journal = {ESAIM: Probability and Statistics},
keywords = {Fractional Brownian motion; linear system;
optimal control; quadratic payoff; infinite time.; optimal control; infinite time},
language = {eng},
month = {3},
pages = {185-205},
publisher = {EDP Sciences},
title = {On the infinite time horizon linear-quadratic regulator problem under a fractional Brownian perturbation},
url = {http://eudml.org/doc/104329},
volume = {9},
year = {2010},
}
TY - JOUR
AU - Kleptsyna, Marina L.
AU - Le Breton, Alain
AU - Viot, Michel
TI - On the infinite time horizon linear-quadratic regulator problem under a fractional Brownian perturbation
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 9
SP - 185
EP - 205
AB -
In this paper we solve the basic fractional
analogue of the classical infinite time horizon linear-quadratic Gaussian
regulator problem. For a completely observable controlled linear
system driven by a fractional Brownian motion, we describe
explicitely the optimal control policy which minimizes an
asymptotic quadratic performance criterion.
LA - eng
KW - Fractional Brownian motion; linear system;
optimal control; quadratic payoff; infinite time.; optimal control; infinite time
UR - http://eudml.org/doc/104329
ER -
References
top- F. Biaggini, Y. Hu, B. Øksendal and A. Sulem, A stochastic maximum principle for processes driven by fractional Brownian motion. Stochastic Processes Appl.100 (2002) 233–253.
- D. Blackwell and L. Dubins, Merging of opinions with increasing information. Ann. Math. Statist.33 (1962) 882–886.
- M.H.A. Davis, Linear Estimation and Stochastic Control. Chapman and Hall, New York (1977).
- L. Decreusefond and A.S. Üstünel, Stochastic analysis of the fractional Brownian motion. Potential Anal.10 (1999) 177–214.
- T.E. Duncan, Y. Hu and B. Pasik-Duncan, Stochastic calculus for fractional Brownian motion I. Theory. SIAM J. Control Optim.38 (2000) 582–612.
- G. Gripenberg and I. Norros, On the prediction of fractional Brownian motion. J. Appl. Probab.33 (1996) 400–410.
- M.L. Kleptsyna and A. Le Breton, Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Statist. Inference Stochastic Processes5 (2002) 229–248.
- M.L. Kleptsyna and A. Le Breton, Extension of the Kalman-Bucy filter to elementary linear systems with fractional Brownian noises. Statist. Inference Stochastic Processes5 (2002) 249–271.
- M.L. Kleptsyna, A. Le Breton and M.-C. Roubaud, General approach to filtering with fractional Brownian noises – Application to linear systems. Stochastics Reports71 (2000) 119–140.
- M.L. Kleptsyna, A. Le Breton and M. Viot, About the linear-quadratic regulator problem under a fractional Brownian perturbation. ESAIM: PS7 (2003) 161–170.
- M.L. Kleptsyna, A. Le Breton and M. Viot, Asymptotically optimal filtering in linear systems with fractional Brownian noises. Statist. Oper. Res. Trans. (2004) 28 177–190.
- A. Le Breton, Adaptive control in the scalar linear-quadratic model in continious time. Statist. Probab. Lett.13 (1992) 169–177.
- R.S. Liptser and A.N. Shiryaev, Statist. Random Processes. Springer-Verlag, New York (1978).
- R.S. Liptser and A.N. Shiryaev, Theory of Martingales. Kluwer Academic Publ., Dordrecht (1989).
- G.M. Molchan, Linear problems for fractional Brownian motion: group approach. Probab. Theory Appl.1 (2002) 59–70 (in Russian).
- G.M. Molchan, Gaussian processes with spectra which are asymptotically equivalent to a power of λ. Probab. Theory Appl.14 (1969) 530–532.
- G.M. Molchan and J.I. Golosov, Gaussian stationary processes with which are asymptotic power spectrum. Soviet Math. Dokl.10 (1969) 134–137.
- I. Norros, E. Valkeila and J. Virtamo, An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli5 (1999) 571–587.
- C.J. Nuzman and H.V. Poor, Linear estimation of self-similar processes via Lamperti's transformation. J. Appl. Prob.37 (2000) 429–452.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.