Conditional principles for random weighted measures
ESAIM: Probability and Statistics (2010)
- Volume: 9, page 283-306
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topGozlan, Nathael. "Conditional principles for random weighted measures." ESAIM: Probability and Statistics 9 (2010): 283-306. <http://eudml.org/doc/104338>.
@article{Gozlan2010,
abstract = {
In this paper, we prove a conditional principle of Gibbs type for
random weighted measures of the form
$\{L_n=\frac\{1\}\{n\}\sum_\{i=1\}^nZ_i\delta_\{x_i^n\}\}$, ((Zi)i being a
sequence of i.i.d. real random variables. Our work extends the
preceding results of Gamboa and Gassiat (1997), in allowing to consider thin
constraints. Transportation-like ideas are used in the proof.
},
author = {Gozlan, Nathael},
journal = {ESAIM: Probability and Statistics},
keywords = {Large deviations; transportation cost inequalities; conditional laws of large numbers; minimum entropy methods. ; minimum entropy methods},
language = {eng},
month = {3},
pages = {283-306},
publisher = {EDP Sciences},
title = {Conditional principles for random weighted measures},
url = {http://eudml.org/doc/104338},
volume = {9},
year = {2010},
}
TY - JOUR
AU - Gozlan, Nathael
TI - Conditional principles for random weighted measures
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 9
SP - 283
EP - 306
AB -
In this paper, we prove a conditional principle of Gibbs type for
random weighted measures of the form
${L_n=\frac{1}{n}\sum_{i=1}^nZ_i\delta_{x_i^n}}$, ((Zi)i being a
sequence of i.i.d. real random variables. Our work extends the
preceding results of Gamboa and Gassiat (1997), in allowing to consider thin
constraints. Transportation-like ideas are used in the proof.
LA - eng
KW - Large deviations; transportation cost inequalities; conditional laws of large numbers; minimum entropy methods. ; minimum entropy methods
UR - http://eudml.org/doc/104338
ER -
References
top- S.G. Bobkov and F. Gotze, Exponential integrability and transportation cost related to logarithmic sobolev inequalities. J. Funct. Anal.163 (1999) 1–28.
- J.M. Borwein and A.S. Lewis, Duality relationships for entropy-like minimization problems. SIAM J. Control Optim.29 (1991) 325–338.
- J.M. Borwein and A.S. Lewis, Partially-finite programming in L1 and the exitence of maximum entropy estimates. SIAM J. Optim.3 (1993) 248–267.
- P. Cattiaux and N. Gozlan, Deviations lower bounds and conditional principles. Prépublications de l'Université Paris 10, Nanterre (2002).
- I. Csiszar, I-divergence geometry of probability distributions and minimization problems. Ann. Prob.3 (1975) 146–158.
- I. Csiszar, Sanov property, generalized I-projection and a conditional limit theorem. Ann. Prob.12 (1984) 768–793.
- I. Csiszar, Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Statist.19 (1991) 2032–2066.
- I. Csiszar, F. Gamboa and E. Gassiat, Mem pixel correlated solutions for generalized moment and interpolation problems. IEEE Trans. Inform. Theory45 (1999) 2253–2270.
- D. Dacunha-Castelle and F. Gamboa, Maximum d'entropie et problèmes des moments. Ann. Inst. Henri Poincaré26 (1990) 567–596.
- A. Dembo and O. Zeitouni, Large deviations techniques and applications. Second edition. Springer-Verlag (1998).
- J.D. Deuschel and D.W. Stroock, Large deviations. Academic Press (1989).
- R.S. Ellis, J. Gough and J.V. Pulé, The large deviation principle for measures with random weights. Rev. Math. Phys.5 (1993) 659–692.
- F. Gamboa, Méthode du maximum d'entropie sur la moyenne et applications. Thèse Orsay (1989).
- F. Gamboa and E. Gassiat, Maximum d'entropie et problèmes des moments: Cas multidimensionnel. Probab. Math. Statist.12 (1991) 67–83.
- F. Gamboa and E. Gassiat, Bayesian methods and maximum entropy for ill-posed inverse problems. Ann. Statist.25 (1997) 328–350.
- N. Gozlan, Principe conditionnel de Gibbs pour des contraintes fines approchées et inégalités de transport. Université Paris 10-Nanterre (2005).
- J.B. Hirriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis. Springer-Verlag (2001).
- C. Léonard, Minimizer of energy functionals. Acta Math. Hungar.93 (2001) 281–325.
- C. Léonard, A convex optimization problem arising from probabilistic questions. Prépublications de l'Université Paris 10-Nanterre (2004).
- C. Léonard, Dominating points and entropic projections. Prépublications de l'Université Paris 10-Nanterre (2004).
- P. Massart, Saint-Flour Lecture Notes (2003).
- J. Najim, A Cramer type theorem for weighted random variables. Electronic J. Probab.7 (2002).
- R.T. Rockafellar and R. Wets, Variational Analysis. Springer-Verlag (1997).
- D.W. Stroock and O. Zeitouni, Microcanonical distributions, Gibbs states and the equivalence of ensembles, R. Durret and H. Kesten Eds., Birkhäuser. Festschrift in honour of F. Spitzer (1991) 399–424.
- A. Van Der Vaart and J. Wellner, Weak convergence and empirical processes. Springer Series in Statistics. Springer (1995).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.