Displaying similar documents to “Conditional principles for random weighted measures”

Replicant compression coding in Besov spaces

Gérard Kerkyacharian, Dominique Picard (2010)

ESAIM: Probability and Statistics

Similarity:

We present here a new proof of the theorem of Birman and Solomyak on the metric entropy of the unit ball of a Besov space B π , q s on a regular domain of d . The result is: if then the Kolmogorov metric entropy satisfies . This proof takes advantage of the representation of such spaces on wavelet type bases and extends the result to more general spaces. The lower bound is a consequence of very simple probabilistic exponential inequalities. To prove the upper...

Limit theorems for U-statistics indexed by a one dimensional random walk

Nadine Guillotin-Plantard, Véronique Ladret (2010)

ESAIM: Probability and Statistics

Similarity:

Let ( be a -random walk and ( ξ x ) x be a sequence of independent and identically distributed -valued random variables, independent of the random walk. Let be a measurable, symmetric function defined on 2 with values in . We study the weak convergence of the sequence 𝒰 n , n , with values in the set of right continuous real-valued functions with left limits, defined by i , j = 0 [ n t ] h ( ξ S i , ξ S j ) , t [ 0 , 1 ] . Statistical applications are presented, in particular we prove a strong law of large numbers for -statistics indexed by a...

Links between Young measures associated to constrained sequences

Anca-Maria Toader (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We give necessary and sufficient conditions which characterize the Young measures associated to two oscillating sequences of functions, on ω 1 × ω 2 and on ω 2 satisfying the constraint v n ( y ) = 1 | ω 1 | ω 1 u n ( x , y ) d x . Our study is motivated by nonlinear effects induced by homogenization. Techniques based on equimeasurability and rearrangements are employed.

Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate

Claire Chainais-Hillairet (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this paper, we study some finite volume schemes for the nonlinear hyperbolic equation u t ( x , t ) + div F ( x , t , u ( x , t ) ) = 0 with the initial condition u 0 L ( N ) . Passing to the limit in these schemes, we prove the existence of an entropy solution u L i n f t y ( N × + ) . Proving also uniqueness, we obtain the convergence of the finite volume approximation to the entropy solution in L l o c p ( N × + ) , 1 ≤ ≤ +∞. Furthermore, if u 0 L BV l o c ( N ) , we show that u BV l o c ( N × + ) , which leads to an “ h 1 4 ” error estimate between the approximate and the entropy solutions (where defines the...