On the minimizing point of the incorrectly centered empirical process and its limit distribution in nonregular experiments
ESAIM: Probability and Statistics (2010)
- Volume: 9, page 307-322
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topFerger, Dietmar. "On the minimizing point of the incorrectly centered empirical process and its limit distribution in nonregular experiments." ESAIM: Probability and Statistics 9 (2010): 307-322. <http://eudml.org/doc/104339>.
@article{Ferger2010,
abstract = {
Let Fn be the empirical distribution function (df) pertaining
to independent random variables with continuous df F. We
investigate the minimizing point $\hat\tau_n$ of the empirical
process Fn - F0, where F0 is another df which differs from
F. If F and F0 are locally Hölder-continuous of order
α at a point τ our main result states that
$n^\{1/\alpha\}(\hat\tau_n - \tau)$ converges in distribution. The
limit variable is the almost sure unique minimizing point of a
two-sided time-transformed homogeneous Poisson-process with a
drift. The time-transformation and the drift-function are of the
type |t|α.
},
author = {Ferger, Dietmar},
journal = {ESAIM: Probability and Statistics},
keywords = {Rescaled empirical process; argmin-CMT; Poisson-process;
weak convergence in $D(\mathbb\{R\})$. ; weak convergence in },
language = {eng},
month = {3},
pages = {307-322},
publisher = {EDP Sciences},
title = {On the minimizing point of the incorrectly centered empirical process and its limit distribution in nonregular experiments},
url = {http://eudml.org/doc/104339},
volume = {9},
year = {2010},
}
TY - JOUR
AU - Ferger, Dietmar
TI - On the minimizing point of the incorrectly centered empirical process and its limit distribution in nonregular experiments
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 9
SP - 307
EP - 322
AB -
Let Fn be the empirical distribution function (df) pertaining
to independent random variables with continuous df F. We
investigate the minimizing point $\hat\tau_n$ of the empirical
process Fn - F0, where F0 is another df which differs from
F. If F and F0 are locally Hölder-continuous of order
α at a point τ our main result states that
$n^{1/\alpha}(\hat\tau_n - \tau)$ converges in distribution. The
limit variable is the almost sure unique minimizing point of a
two-sided time-transformed homogeneous Poisson-process with a
drift. The time-transformation and the drift-function are of the
type |t|α.
LA - eng
KW - Rescaled empirical process; argmin-CMT; Poisson-process;
weak convergence in $D(\mathbb{R})$. ; weak convergence in
UR - http://eudml.org/doc/104339
ER -
References
top- P. Billingsley, Convergence of probability measures. Wiley, New York (1968).
- Z.W. Birnbaum and R. Pyke, On some distributions related to the statistic . Ann. Math. Statist.29 (1958) 179–187.
- Z.W. Birnbaum and F.H. Tingey, One-sided confidence contours for probability distribution functions. Ann. Math. Statist.22 (1951) 592–596.
- F.P. Cantelli, Considerazioni sulla legge uniforme dei grandi numeri e sulla generalizzazione di un fondamentale teorema del sig. Paul Levy. Giorn. Ist. Ital. Attuari4 (1933) 327–350.
- J. Donsker, Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Statist.23 (1952) 277–281.
- R.M. Dudley, Weak convergence of probabilities on nonseparable metric spaces and empirical measures on Euclidean spaces. Illinois J. Math.10 (1966) 109–126.
- R.M. Dudley, Measures on nonseparable metric spaces. Illinois J. Math.11 (1967) 449–453.
- R.M. Dudley, Uniform central limit theorems. Cambridge University Press, New York (1999).
- M. Dwass, On several statistics related to empirical distribution functions. Ann. Math. Statist.29 (1958) 188–191.
- R. Dykstra and Ch. Carolan, The distribution of the argmax of two-sided Brownian motion with parabolic drift. J. Statist. Comput. Simul.63 (1999) 47–58.
- D. Ferger, The Birnbaum-Pyke-Dwass theorem as a consequence of a simple rectangle probability. Theor. Probab. Math. Statist.51 (1995) 155–157.
- D. Ferger, Analysis of change-point estimators under the null hypothesis. Bernoulli7 (2001) 487–506.
- D. Ferger, A continuous mapping theorem for the argmax-functional in the non-unique case. Statistica Neerlandica58 (2004) 83–96.
- D. Ferger, Cube root asymptotics for argmin-estimators. Unpublished manuscript, Technische Universität Dresden (2005).
- V. Glivenko, Sulla determinazione empirica delle leggi die probabilita. Giorn. Ist. Ital. Attuari4 (1933) 92–99.
- P. Groneboom, Brownian motion with a parabolic drift and Airy Functions. Probab. Th. Rel. Fields81 (1989) 79–109.
- P. Groneboom and J.A. Wellner, Computing Chernov's distribution. J. Comput. Graphical Statist.10 (2001) 388–400.
- J. Hoffman-Jørgensen, Stochastic processes on Polish spaces. (Published (1991): Various Publication Series No. 39, Matematisk Institut, Aarhus Universitet) (1984).
- I.A. Ibragimov and R.Z. Has'minskii, Statistical Estimation: Asymptotic Theory. Springer-Verlag, New York (1981).
- O. Kallenberg, Foundations of Modern Probability. Springer-Verlag, New York (1999).
- K. Knight, Epi-convergence in distribution and stochastic equi-semicontinuity. Technical Report, University of Toronto (1999) 1–22.
- A.N. Kolmogorov, Sulla determinazione empirica di una legge di distribuzione. Giorn. Ist. Ital. Attuari4 (1933) 83–91.
- N.H. Kuiper, Alternative proof of a theorem of Birnbaum and Pyke. Ann. Math. Statist.30 (1959) 251–252.
- T. Lindvall, Weak convergence of probability measures and random functions in the function space D[0,∞). J. Appl. Prob.10 (1973) 109–121.
- P. Massart, The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab.18 (1990) 1269–1283.
- G.Ch. Pflug, On an argmax-distribution connected to the Poisson process, in Proc. of the fifth Prague Conference on asymptotic statistics, P. Mandl, H. Husková Eds. (1993) 123–130.
- G.R. Shorack and J.A. Wellner, Empirical processes with applications to statistics. Wiley, New York (1986).
- N.V. Smirnov, Näherungsgesetze der Verteilung von Zufallsveränderlichen von empirischen Daten. Usp. Mat. Nauk.10 (1944) 179–206.
- L. Takács, Combinatorial Methods in the theory of stochastic processes. Robert E. Krieger Publishing Company, Huntingtun, New York (1967).
- A.W. van der Vaart and J.A. Wellner, Weak convergence of empirical processes. Springer-Verlag, New York (1996).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.