Concentration inequalities for semi-bounded martingales
ESAIM: Probability and Statistics (2007)
- Volume: 12, page 51-57
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- A. Maurer, Abound on the deviation probability for sums of non-negative random variables. J. Inequa. Pure Appl. Math.4 (2003) Article 15. Zbl1021.60036
- V.H. De La Peña, A bound on the moment generating function of a sum of dependent variables with an application to simple random sampling without replacement. Ann. Inst. H. Poincaré Probab. Staticst.30 (1994) 197–211. Zbl0796.60020
- V.H. De La Peña, A general class of exponential inequalities for martingales and ratios. Ann. Probab.27 (1999) 537–564. Zbl0942.60004
- A. Jakubowski, Principle of conditioning in limit theorems for sums of random varibles. Ann. Probab.14 (1986) 902–915. Zbl0593.60031
- S. Kwapień and W.A. Woyczyński, Tangent sequences of random variables: basic inequalities and their applications, in Proceeding of Conference on Almost Everywhere Convergence in Probability and Ergodic Theory, G.A. Edgar and L. Sucheston Eds., Academic Press, New York (1989) 237–265. Zbl0693.60033
- S. Kwapień and W.A. Woyczyński, Random series and Stochastic Integrals: Single and Multiple. Birkhäuser, Boston (1992). Zbl0751.60035
- I. Pinelis, Optimum bounds for the distributions of martingales in Banach space. Ann. Probab.22 (1994) 1679–1706. Zbl0836.60015
- G.L. Wise and E.B. Hall, Counterexamples in probability and real analysis. Oxford Univ. Press, New York.(1993). Zbl0827.26001