A bound on the moment generating function of a sum of dependent variables with an application to simple random sampling without replacement

Victor H. De la Peña

Annales de l'I.H.P. Probabilités et statistiques (1994)

  • Volume: 30, Issue: 2, page 197-211
  • ISSN: 0246-0203

How to cite

top

De la Peña, Victor H.. "A bound on the moment generating function of a sum of dependent variables with an application to simple random sampling without replacement." Annales de l'I.H.P. Probabilités et statistiques 30.2 (1994): 197-211. <http://eudml.org/doc/77479>.

@article{DelaPeña1994,
author = {De la Peña, Victor H.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {moment generating function; Laplace transform; sampling without replacement; martingales; conditionally independent sequence; conditionally independent sampling},
language = {eng},
number = {2},
pages = {197-211},
publisher = {Gauthier-Villars},
title = {A bound on the moment generating function of a sum of dependent variables with an application to simple random sampling without replacement},
url = {http://eudml.org/doc/77479},
volume = {30},
year = {1994},
}

TY - JOUR
AU - De la Peña, Victor H.
TI - A bound on the moment generating function of a sum of dependent variables with an application to simple random sampling without replacement
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1994
PB - Gauthier-Villars
VL - 30
IS - 2
SP - 197
EP - 211
LA - eng
KW - moment generating function; Laplace transform; sampling without replacement; martingales; conditionally independent sequence; conditionally independent sampling
UR - http://eudml.org/doc/77479
ER -

References

top
  1. [1] M. Arcones and E. Giné, Limit Theorems for U-processes, 1990, To appear in Ann. of Probab. Zbl0789.60031MR1235426
  2. [2] D.L. Burkholder, A Geometric Condition that Implies the Existence of Certain Singular Integrals of Banach-Space-Valued Functions, Conference on Harmonic Analysis in Honor of Antoni Zygmund, Chicago, 1981, edited by William Beckner, Alberto P. Calderón, Robert Fefferman and Peter W. Jones, Wadsworth, Belmont, California, 1983. MR730072
  3. [3] Y.S. Chow and H. Teicher, Probability Theory, Springer-Verlag, New York, 1978. Zbl0399.60001MR513230
  4. [4] V. H. de la Peña, Bounds on the Expectation of Functions of Martingales and Sums of Positive rv's in Terms of Norms of Sums of Independent Random Variables, Proccedings Amer. Math. Soc., Vol. 108, No. 1, pp. 233-239. Zbl0682.60032MR990432
  5. [5] V. H. de la Peña, Decoupling and Khintchine's Inequalities for U-Statistics, Ann. Probab., Vol. 20, No. 4, 1992, pp. 1877-1892. Zbl0761.60014MR1188046
  6. [6] V. H. de la Peña, Inequalities for Tails of Adapted Processes with an Application to Wald's Lemma, Journal of Theoretical Probability, Vol. 6, No. 2, 1993. Zbl0780.60018
  7. [7] P. Hitczenko, Comparison of Moments of Tangent Sequences of Random Variables, Prob. Th. Rel. Fields, Vol. 78, No., 2, 1988, pp. 223-230. Zbl0631.60003MR945110
  8. [8] P. Hitczenko, Best Constants in Martingale Version of Rosenthal's Inequality, Ann. of Probab., Vol. 18, No. 4, 1990, pp. 1656-1668. Zbl0725.60018MR1071816
  9. [9] P. Hitczenko, Personal communication, 1991. 
  10. [10] W. Hoeffding, Probability Inequalities for Sums of Bounded Random Variables, Journal of the American Statistical Association, Vol. 58, 1963, pp. 13-30. Zbl0127.10602MR144363
  11. [11] J. Jacod, Une généralisation des semimartingales : Les processus admettant un processus à accroissements independants tangent, Lecture Notes in Math, No. 1247, 1984, pp. 479-514. Zbl0539.60033MR770952
  12. [12] A. Jakubowski, Principle of Conditioning in Limit Theorems for Sums of Random Variables, Ann. Probab., Vol. 14, No 3, pp. 902-915. Zbl0593.60031MR841592
  13. [13] O. Kallenberg and J. Szulga, Multiple Integration with Respect to Poisson and Lévy Processes, Probab. Th. Rel. Fields, Vol. 83, 1989, pp. 101-134. Zbl0681.60049MR1012497
  14. [14] M.J. Klass, A Best Improvement of Wald's Lemma, Ann. of Probab., Vol. 16, No. 2, 1988, pp. 840-853. Zbl0648.60050MR929081
  15. [15] M.J. Klass, Uniform Lower Bounds for Randomly Stopped Banach Space-Valued Random Sums, Ann. of Probab., Vol. 18, No. 2, 1990, pp. 790-809. Zbl0706.60046MR1055433
  16. [16] W. Krakowiak and J. Szulga, On a p-Stable Multiple Integral, II, Probab. Th. Rel. Fields, Vol. 78., No. 3, 1988, pp. 449-453. Zbl0628.60066MR949183
  17. [17] S. Kwapień, Decoupling Inequalities for Polynomial Chaos,Ann. of Probab., Vol. 15, 1987, pp. 1062-1072. Zbl0622.60026MR893914
  18. [18] S. Kwapień and W.A. Woyczyński, Semimartingale Integrals via Decoupling Inequalities and Tangent processes, Preprint No. 88-93, Department of Mathematics and Statistics, Case Western Reserve University, 1988. Zbl0778.60041MR1199772
  19. [19] S. Kwapień and W.A. Woyczyński, Tangent Sequences of Random Variables: Basic Inequalities and their Applications, Proceedings of Conference on Almost Everywhere Convergence in Probability and Ergodic Theory, pp. 237-265, Columbus Ohio, June 1988. G. A. Edgar and L. Sucheston, Editors, Academic Press, New York, 1989. Zbl0693.60033MR1035249
  20. [20] S. Kwapień and W.A. Woyczyński, Random Series and Stochastic Integrals. Single and Multiple, Birkhäuser, Boston, 1992. Zbl0751.60035MR1167198
  21. [21] T.R. Mcconnell, and M. Taqqu, Decoupling Inequalities for Multilinear Forms in Independent Symmetric Random Variables, Ann. of Probab., Vol. 14, No. 3, 1986, pp. 943-954. Zbl0602.60025MR841595
  22. [22] T.R. Mcconnell and M. Taqqu, Decoupling Inequalities for Banach-Valued Multilinear Forms in Independent Symmetric Banach-Valued Random Variables, Probab. Th. Rel. Fields, Vol. 75, 1987, pp. 499-507. Zbl0609.60025MR894902
  23. [23] T.R. Mcconnell, Decoupling and Stochastic Integration in UMD Banach Spaces, Prob. and Math. Stat., Vol. 10, No. 2, 1989, pp. 283-295. Zbl0718.60050MR1057936
  24. [24] J. Zinn, Comparison of Martingale Difference Sequences. Proceedings of Conference Probability in Banach Spaces V, Lecture Notes in Mathematics, No. 1153, 1975, pp. 453-457, Springer-Verlag, Berlin. Zbl0571.60058MR821997

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.