On Bochner-Martinelli residue currents and their annihilator ideals
Mattias Jonsson[1]; Elizabeth Wulcan[1]
- [1] University of Michigan Department of Mathematics Ann Arbor MI 48109-1043 (USA)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 6, page 2119-2142
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topJonsson, Mattias, and Wulcan, Elizabeth. "On Bochner-Martinelli residue currents and their annihilator ideals." Annales de l’institut Fourier 59.6 (2009): 2119-2142. <http://eudml.org/doc/10449>.
@article{Jonsson2009,
abstract = {We study the residue current $R^f$ of Bochner-Martinelli type associated with a tuple $f=(f_1,\dots ,f_m)$ of holomorphic germs at $0\in \mathbf\{C\}^n$, whose common zero set equals the origin. Our main results are a geometric description of $R^f$ in terms of the Rees valuations associated with the ideal $(f)$ generated by $f$ and a characterization of when the annihilator ideal of $R^f$ equals $(f)$.},
affiliation = {University of Michigan Department of Mathematics Ann Arbor MI 48109-1043 (USA); University of Michigan Department of Mathematics Ann Arbor MI 48109-1043 (USA)},
author = {Jonsson, Mattias, Wulcan, Elizabeth},
journal = {Annales de l’institut Fourier},
keywords = {Residue current; annihilator ideal; Rees valuation; residue current},
language = {eng},
number = {6},
pages = {2119-2142},
publisher = {Association des Annales de l’institut Fourier},
title = {On Bochner-Martinelli residue currents and their annihilator ideals},
url = {http://eudml.org/doc/10449},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Jonsson, Mattias
AU - Wulcan, Elizabeth
TI - On Bochner-Martinelli residue currents and their annihilator ideals
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 6
SP - 2119
EP - 2142
AB - We study the residue current $R^f$ of Bochner-Martinelli type associated with a tuple $f=(f_1,\dots ,f_m)$ of holomorphic germs at $0\in \mathbf{C}^n$, whose common zero set equals the origin. Our main results are a geometric description of $R^f$ in terms of the Rees valuations associated with the ideal $(f)$ generated by $f$ and a characterization of when the annihilator ideal of $R^f$ equals $(f)$.
LA - eng
KW - Residue current; annihilator ideal; Rees valuation; residue current
UR - http://eudml.org/doc/10449
ER -
References
top- M. Andersson, Uniqueness and factorization of Coleff-Herrera currents, Preprint, to appear in Ann. Fac. Sci. Toulouse Math Zbl1187.32026
- M. Andersson, Residue currents and ideals of holomorphic functions, Bull. Sci. Math. 128 (2004), 481-512 Zbl1086.32005MR2074610
- M. Andersson, Residues of holomorphic sections and Lelong currents, Ark. Mat. 43 (2005), 201-219 Zbl1103.32020MR2172988
- M. Andersson, E. Götmark, Explicit representation of membership of polynomial ideals, Preprint, Göteborg, available at arXiv:0806.2592 Zbl1216.32002
- M. Andersson, H. Samuelsson, J. Sznajdman, On the Briancon-Skoda theorem on a singular variety, Preprint, to appear in Ann. Inst. Fourier Zbl1200.32007
- M. Andersson, E. Wulcan, Decomposition of residue currents, to appear in Journal für die reine und angewandte Mathematik, available at arXiv:0710.2016 Zbl1190.32006
- M. Andersson, E. Wulcan, Residue currents with prescribed annihilator ideals, Ann. Sci. École Norm. Sup. 40 (2007), 985-1007 Zbl1143.32003MR2419855
- C. A. Berenstein, R. Gay, A. Vidras, A. Yger, Residue currents and Bezout identities, 114 (1993), Birkhäuser Verlag Zbl0802.32001MR1249478
- C. A. Berenstein, A. Yger, Analytic residue theory in the non-complete intersection case, J. Reine Angew. Math. 527 (2000), 203-235 Zbl0960.32004MR1794023
- J-E. Björk, Residues and -modules, (2004), 605-651, Springer, Berlin Zbl1069.32001MR2077588
- J. Briançon, H. Skoda, Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de , C. R. Acad. Sci. Paris Sér. A 278 (1974), 949-951 Zbl0307.32007MR340642
- W. Bruns, J. Herzog, Cohen-Macaulay rings, 39 (1993), Cambridge University Press, Cambridge Zbl0788.13005MR1251956
- N. Coleff, M. Herrera, Les courants résiduels associcés à une forme méromorphe, 633 (1978), Springer Verlag, Berlin Zbl0371.32007MR492769
- A. Dickenstein, C. Sessa, Canonical representatives in moderate cohomology, Invent. Math. 80 (1985), 417-434 Zbl0556.32005MR791667
- R. Hartshorne, Algebraic Geometry, 52 (1977), Springer Verlag, Berlin Zbl0367.14001MR463157
- W. Heinzer, L. J. Ratliff, K. Shah, On the irreducible components of an ideal, Comm. Algebra 25 (1997), 1609-1634 Zbl0872.13002MR1444023
- M. Hickel, Une note à propos du Jacobien de fonctions holomorphes à l’origine de , Preprint (2007) Zbl1154.32010
- C. Huneke, I. Swanson, Integral closure of ideals, rings, and modules, 336 (2006), Cambridge University Press, Cambridge Zbl1117.13001MR2266432
- R. Lazarsfeld, Positivity in algebraic geometry. I & II, 48, 49 (2004), Springer-Verlag, Berlin Zbl1093.14500MR2095471
- M. Passare, Residues, currents, and their relation to ideals of holomorphic functions, Math. Scand. 62 (1988), 75-152 Zbl0633.32005MR961584
- M. Passare, A. Tsikh, A. Yger, Residue currents of the Bochner-Martinelli type, Publ. Mat. 44 (2000), 85-117 Zbl0964.32003MR1775747
- B. Teissier, Variétés polaires. II. Multiplicités polaires, sections planes, et conditions de Whitney, 961 (1982), Springer-Verlag, Berlin Zbl0585.14008MR708342
- A.. Vidras, A. Yger, On some generalizations of Jacobi’s residue formula, Ann. Sci. École Norm. Sup. 34 (2001), 131-157 Zbl0991.32003MR1833092
- E. Wulcan, Residue currents constructed from resolutions of monomial ideals, To appear in Math. Z. available at arXiv:math/0702847 Zbl1257.32006
- E. Wulcan, Residue currents of monomial ideals, Indiana Univ. Math. J. 56 (2007), 365-388 Zbl1120.32004MR2305939
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.