On Bochner-Martinelli residue currents and their annihilator ideals

Mattias Jonsson[1]; Elizabeth Wulcan[1]

  • [1] University of Michigan Department of Mathematics Ann Arbor MI 48109-1043 (USA)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 6, page 2119-2142
  • ISSN: 0373-0956

Abstract

top
We study the residue current R f of Bochner-Martinelli type associated with a tuple f = ( f 1 , , f m ) of holomorphic germs at 0 C n , whose common zero set equals the origin. Our main results are a geometric description of R f in terms of the Rees valuations associated with the ideal ( f ) generated by f and a characterization of when the annihilator ideal of R f equals ( f ) .

How to cite

top

Jonsson, Mattias, and Wulcan, Elizabeth. "On Bochner-Martinelli residue currents and their annihilator ideals." Annales de l’institut Fourier 59.6 (2009): 2119-2142. <http://eudml.org/doc/10449>.

@article{Jonsson2009,
abstract = {We study the residue current $R^f$ of Bochner-Martinelli type associated with a tuple $f=(f_1,\dots ,f_m)$ of holomorphic germs at $0\in \mathbf\{C\}^n$, whose common zero set equals the origin. Our main results are a geometric description of $R^f$ in terms of the Rees valuations associated with the ideal $(f)$ generated by $f$ and a characterization of when the annihilator ideal of $R^f$ equals $(f)$.},
affiliation = {University of Michigan Department of Mathematics Ann Arbor MI 48109-1043 (USA); University of Michigan Department of Mathematics Ann Arbor MI 48109-1043 (USA)},
author = {Jonsson, Mattias, Wulcan, Elizabeth},
journal = {Annales de l’institut Fourier},
keywords = {Residue current; annihilator ideal; Rees valuation; residue current},
language = {eng},
number = {6},
pages = {2119-2142},
publisher = {Association des Annales de l’institut Fourier},
title = {On Bochner-Martinelli residue currents and their annihilator ideals},
url = {http://eudml.org/doc/10449},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Jonsson, Mattias
AU - Wulcan, Elizabeth
TI - On Bochner-Martinelli residue currents and their annihilator ideals
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 6
SP - 2119
EP - 2142
AB - We study the residue current $R^f$ of Bochner-Martinelli type associated with a tuple $f=(f_1,\dots ,f_m)$ of holomorphic germs at $0\in \mathbf{C}^n$, whose common zero set equals the origin. Our main results are a geometric description of $R^f$ in terms of the Rees valuations associated with the ideal $(f)$ generated by $f$ and a characterization of when the annihilator ideal of $R^f$ equals $(f)$.
LA - eng
KW - Residue current; annihilator ideal; Rees valuation; residue current
UR - http://eudml.org/doc/10449
ER -

References

top
  1. M. Andersson, Uniqueness and factorization of Coleff-Herrera currents, Preprint, to appear in Ann. Fac. Sci. Toulouse Math Zbl1187.32026
  2. M. Andersson, Residue currents and ideals of holomorphic functions, Bull. Sci. Math. 128 (2004), 481-512 Zbl1086.32005MR2074610
  3. M. Andersson, Residues of holomorphic sections and Lelong currents, Ark. Mat. 43 (2005), 201-219 Zbl1103.32020MR2172988
  4. M. Andersson, E. Götmark, Explicit representation of membership of polynomial ideals, Preprint, Göteborg, available at arXiv:0806.2592 Zbl1216.32002
  5. M. Andersson, H. Samuelsson, J. Sznajdman, On the Briancon-Skoda theorem on a singular variety, Preprint, to appear in Ann. Inst. Fourier Zbl1200.32007
  6. M. Andersson, E. Wulcan, Decomposition of residue currents, to appear in Journal für die reine und angewandte Mathematik, available at arXiv:0710.2016 Zbl1190.32006
  7. M. Andersson, E. Wulcan, Residue currents with prescribed annihilator ideals, Ann. Sci. École Norm. Sup. 40 (2007), 985-1007 Zbl1143.32003MR2419855
  8. C. A. Berenstein, R. Gay, A. Vidras, A. Yger, Residue currents and Bezout identities, 114 (1993), Birkhäuser Verlag Zbl0802.32001MR1249478
  9. C. A. Berenstein, A. Yger, Analytic residue theory in the non-complete intersection case, J. Reine Angew. Math. 527 (2000), 203-235 Zbl0960.32004MR1794023
  10. J-E. Björk, Residues and 𝒟 -modules, (2004), 605-651, Springer, Berlin Zbl1069.32001MR2077588
  11. J. Briançon, H. Skoda, Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de n , C. R. Acad. Sci. Paris Sér. A 278 (1974), 949-951 Zbl0307.32007MR340642
  12. W. Bruns, J. Herzog, Cohen-Macaulay rings, 39 (1993), Cambridge University Press, Cambridge Zbl0788.13005MR1251956
  13. N. Coleff, M. Herrera, Les courants résiduels associcés à une forme méromorphe, 633 (1978), Springer Verlag, Berlin Zbl0371.32007MR492769
  14. A. Dickenstein, C. Sessa, Canonical representatives in moderate cohomology, Invent. Math. 80 (1985), 417-434 Zbl0556.32005MR791667
  15. R. Hartshorne, Algebraic Geometry, 52 (1977), Springer Verlag, Berlin Zbl0367.14001MR463157
  16. W. Heinzer, L. J. Ratliff, K. Shah, On the irreducible components of an ideal, Comm. Algebra 25 (1997), 1609-1634 Zbl0872.13002MR1444023
  17. M. Hickel, Une note à propos du Jacobien de n fonctions holomorphes à l’origine de n , Preprint (2007) Zbl1154.32010
  18. C. Huneke, I. Swanson, Integral closure of ideals, rings, and modules, 336 (2006), Cambridge University Press, Cambridge Zbl1117.13001MR2266432
  19. R. Lazarsfeld, Positivity in algebraic geometry. I & II, 48, 49 (2004), Springer-Verlag, Berlin Zbl1093.14500MR2095471
  20. M. Passare, Residues, currents, and their relation to ideals of holomorphic functions, Math. Scand. 62 (1988), 75-152 Zbl0633.32005MR961584
  21. M. Passare, A. Tsikh, A. Yger, Residue currents of the Bochner-Martinelli type, Publ. Mat. 44 (2000), 85-117 Zbl0964.32003MR1775747
  22. B. Teissier, Variétés polaires. II. Multiplicités polaires, sections planes, et conditions de Whitney, 961 (1982), Springer-Verlag, Berlin Zbl0585.14008MR708342
  23. A.. Vidras, A. Yger, On some generalizations of Jacobi’s residue formula, Ann. Sci. École Norm. Sup. 34 (2001), 131-157 Zbl0991.32003MR1833092
  24. E. Wulcan, Residue currents constructed from resolutions of monomial ideals, To appear in Math. Z.  available at arXiv:math/0702847 Zbl1257.32006
  25. E. Wulcan, Residue currents of monomial ideals, Indiana Univ. Math. J. 56 (2007), 365-388 Zbl1120.32004MR2305939

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.